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Translator's Foreword

Those reading these lines are
hereby summoned to raise their
children to a good command of
Elementary Geometry, to be judged
by the rigorous standards of the
ancient Greek mathematicians.

A magic spefl

Mathematics is an ancient culture. It is passed on by each generation to
the next. What we now call Elementary Geometry was created by Greeks
some 2300 years ago and nurtured by them with pride for about a millen-
nium. Then, for another millennium, Arabs were preserving Geometry and
transcribing it to the language of Algebra that they invented. The effort
bore fruit in the Modern Age, when exact sciences emerged through the
work of Frenchman Rene Descartes, Englishman Isaac Newton, German
Carl Friedrich Gauss, and their contemporaries and followers.

Here is one reason. On the decline of the 19th century, a Scottish pro-
fessor showed to his class that the mathematical equations, he introduced
to explain electricity experiments, admit wave-like solutions. Afterwards
a German engineer Heinrich Hertz, who happened to be a student in that
class, managed to generate and register the waves. A century later we find
that ahriost every thing we use: GPS, TV, cell-phones, computers, and
everything we manufacture, buy, or learn using them, descends from the
mathematical discovery made by James Clerk Maxwell.

I gave the above speech at a graduation ceremony at the University of
California Berkeley, addressing the class of graduating math majors — and
then I cast a spell upon them.

Soon there came the realization that without a Magic Wand the spell
won't work: I did not manage to find any textbook in English that I could
recommend to a young person willing to master Elementary Geometry.
This is when the thought of Kiselev's came to mind.

Andrei Petrovich Kiselev (pronounced And-'rei Pet-'ro-vich Ki-se-'lyov)
left a unique legacy to mathematics education. Born in 1852 in a provin-
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cial Russian town Mzensk, he graduated in 1875 from the Department of
Mathematics and Physics of St.-Petersburg University to begin a long ca-
reer as a math and science teacher and author. His school-level textbooks
"A Systematic Course of Arithmetic" 1 [9], "Elementary Algebra" [10], and
"Elementary Geometry" (Book I "Planimetry", Book II "Stereometry") [3]
were first published in 1884, 1888 and 1892 respectively, and soon gained
a leading position in the Russian mathematics education. Revised and
published more than a hundred times altogether, the books retained their
leadership over many decades both in Tsarist Russia, and after the Revolu-
tion of 1917, under the quite different cultural circumstances of the Soviet
epoch. A few years prior to Kiselev's death in 1940, his books were officially
given the status of stable, i.e. main and only textbooks to be used in all
schools to teach all teenagers in the totalitarian state with a 200-million
population. The books held this status until 1955 (and "Stereometry" even
until 1974) when they got replaced in this capacity by less successful clones
written by more Soviet authors. Yet "Planimetry" remained the favorite
under-the-desk choice of many teachers and a must for honors geometry stu-
dents. In the last decade, Kiselev's "Geometry," which has long become a
rarity, was reprinted by several major publishing houses in Moscow and St.-
Petersburg in both versions: for teachers [6, 8] as an authentic pedagogical
heritage, and for students [5, as a textbook tailored to fit the currently
active school curricula. In the post-Soviet educational market, Kiselev's
"Geometry" continues to compete successfully with its own grandchildren.

What is the secret of such ageless vigor? There are several.
Kiselev himself formulated the following three key virtues of good text-

books: precision, simplicity, conciseness. And competence in the subject —
for we must now add this fourth criterion, which could have been taken for
granted a century ago.

Acquaintance with programs and principles of math education being
developed by European mathematicians was another of Kiselev's assets. In
his preface to the first edition of "Elementary Geometry," in addition to
domestic and translated textbooks, Kiselev quotes ten geometry courses in
French and German published in the previous decade.

Yet another vital elixir that prolongs the life of Kiselev's work was the
continuous effort of the author himself and of the editors of later reprints to
improve and update the books, and to accommodate the teachers' requests,
curriculum fluctuations and pressures of the 20th century classroom.

Last hut not least, deep and beautiful geometry is the most efficient
preservative. Compared to the first textbook in this subject: the "Ele-
ments" [1], which was written by Euclid of Alexandria in the 3rd century
B.C., and whose spirit and structure are so faithfully represented in Kise-
lev's "Geometry," the latter is quite young.

Elementary geometry occupies a singular place in secondary education.
The acquiring of superb reasoning skills is one of those benefits from study-

'The numbers in brackets refer to the bibliography on p. 235.
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ing geometry whose role reaches far beyond mathematics education per se.
Another one is the unlimited opportunity for nurturing creative thinking
(thanks to the astonishingly broad difficulty range of elementary geome-
try problems that have been accwnulated over the decades). Fine learning
habits of those who dared to face the challenge reniain always at work for
them. A lack thereof in those who missed it becomes hard to compensate by
studying anything else. Above all, elementary geometry conveys the essence
and power of the theoretical method in its purest, yet intuitively transparent
and aesthetically appealing, form. Such high expectations seem to depend
however on the appropriate framework: a textbook, a teacher, a culture.

In Russia, the adequate framework emerged apparently in the mid-
thirties, with Kiselev's books as the key component. After the 2nd World
War, countries of Eastern Europe and the Peoples Republic of China,
adapted to their classrooms math textbooks based on Soviet progranis.
Thus, one way or another, Kiselev's "Geometry" has served several gener-
ations of students and teachers in a substantial portion of the planet. It is
the time to make the book available to the English reader.

"Planinietry," targeting the age group of current 7—9th-graders, pro-
vides a concise yet crystal-clear presentation of elementary plane geome-
try, in all its aspects which usually appear in modern high-school geome-
try programs. The reader's mathematical maturity is gently advanced by
commentaries on the nature of mathematical rea.soning distributed wisely
throughout the book. Student's conipetence is reinforced by generously
supplied exercises of varying degree of challenge. Among them, straight-
edge and compass constructions play a prominent role, because, according
to the author, they are essential for animating the subject and cultivating
students' taste. The book is marked with the general sense of measure (in
both selections and omissions), and non-cryptic, unambiguous language.
This makes it equally suitable for independent study, teachers' professional
development, or a regular school classrooiri. The book was indeed desigued
and tuned to be stable.

Hopefully the present adaptation retains the virtues of the original. I
tried to follow it pretty closely, alternating between several available ver-
sions [3, 4, 5, 7, 8] when they disagreed. Yet authenticity of translation
was not the goal, and I felt free to deviate from the source when the need
occurred.

The most notable change is the significant extension and rearrangement
of exercise sections to comply with the US tradition of making textbook
editions self-contained (in Russia separate problem books are in fashion).

Also, I added or redesigned a few sections to represent material which
found its way to geometry curricula rather recently.

Finally, having removed descriptions of several obsolete drafting devices
(such as a pantograph), I would like to share with the reader the following
observation.

In that remote, Kiselevian past, when Elementary Geometry was the
most reliable ally of every engineer, the straightedge and compass were the
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main items in his or her drafting toolbox. The craft of blueprint draft-
ing has long gone thanks to the advance of computers. Consequently, all
267 diagrams in the present edition are produced with the aid of graphing
software Xfig. Still, Elementary Geometry is manifested in their design in
multiple ways. Obviously, it is inherent in all modern technologies through
the "custody chain": Euclid — Descartes — Newton — Maxwell. Plausibly, it
awakened the innovative powers of the many scientists and engineers who
invented and created computers. Possibly, it was among the skills of the
authors of Xfig. Yet, symbolically enough, the most reliable way of draw-
ing a diagram on the computer screen is to use electronic surrogates of the
straightedge and compass and follow literally the prescriptions given in the
present book, often in the very same theorem that the diagram illustrates.
This brings us back to Euclid of Alexandria, who was the first to describe
the theorem, and to the task of passing on his culture.

I believe that the book you are holding in your hands gives everyone a
fair chance to share in the "custody." This is my Magic Wand, and now I
can cast my spell.

Alexander Givental

Department of Mathematics
University of California Berkeley

April, 2006
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Introduction

1. Geometric figures. The part of space occupied by a physical
object is called a geometric solid.

A geometric solid is separated from the surrounding space by a
surface.

A part of the surface is separated from an adjacent part by a
line.

A part of the line is separated from an adjacent part by a point.
The geometric solid, surface, line and point do not exist sepa-

rately. However by way of abstraction we can consider a surface
independently of the geometric solid, a line independently of the
surface, and the point independently of the line. In doing so we
should think of a surface as having no thickness, a line — as having
neither thickness nor width, and a point as having no length, no
width, and no thickness.

A set of points, lines, surfaces, or solids positioned in a certain
way in space is generally called a geometric figure. Geometric fig-
ures can move through space without change. Two geometric figures
are called congruent, if by moving one of the figures it is possi-
ble to superimpose it onto the other so that the two figures become
identified with each other in all their parts.

2. Geometry. A theory studying properties of geometric figures
is called geometry, which translates from Greek as land-measuring.
This name was given to the theory because the main purpose of
geometry in antiquity was to measure distances and areas on the
Earth's surface.

First concepts of geometry as well as their basic properties, are
introduced as idealizations of the corresponding common notions and
everyday experiences.

3. The plane. The most familiar of all surfaces is the fiat sur-
face, or the plane. The idea of the plane is conveyed by a window
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2 Introduction

pane, or the water surface in a quiet pond.
We note the following property of the plane: One can superimpose

a plane on itself or any other plane in a way that takes one given
point to any other given point, and this can also be done after flipping
the plane upside down.

4. The straight line. The most simple line is the straight
line. The image of a thin thread stretched tight or a ray of light
emitted through a small hole give an idea of what a straight line is.
The following fundamental property of the straight line agrees well
with these images:

For every two points in space, there is a straight line passing
through them., and such a line is unique.

It follows from this property that:
If two straight lines are aligned with each other in such a way that

two points of one line coincide with two points of the other, then the
lines coincide in all their other points as well (because otherwise we
would have two distinct straight lines passing through the same two
points, which is impossible).

For the same reason, two straight lines can intersect at most at
one point.

A straight line can lie in a plane. The following holds true:
If a straight line passes through two points of a plane, then all

points of this line lie in this plane.

A a B C b D E

I. - —--h I ------ --

Figure 1 Figure 2 Figure 3

5. The unbounded straight line. Ray. Segment. Thinking
of a straight line as extended indefinitely in both directions, one calls
it an infinite (or unbounded) straight line.

A straight line is usually denoted by two uppercase letters mark-
ing any two points on it. One says "the line AB" or "BA" (Figure
1).

A part of the straight line bounded on both sides is called a
straight segment. It is usually denoted by two letters marking its
endpoints (the segment CD, Figure 2). Sometimes a straight line
or a segment is denoted by one (lowercase) letter; one may say "the
straight line a, the segment b."
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Usually instead of "unbounded straight line" and "straight seg-
inent" we will simply say line and segment respectively.

Sometimes a straight line is considered which terminates in one
direction only, for instance at the endpoint E (Figure 3). Such a
straight line is called a ray (or half-line) drawn from E.

6. Congruent and non-congruent segments. Two segments
are congruent if they can be laid one onto the other so that their
endpoints coincide. Suppose for example that we put the segment
AB onto the segment CD (Figure 4) by placing the point A at the
point C and aligning the ray AB with the ray CD. If, as a result
of this, the points B and D merge, then the segments AB and CD
Qre congruent. Otherwise they are not congruent, and the one which
makes a part of the other is considered smaller.

A B C D

Figure 4

To mark on a line a segment congruent to a given segment, one
uses the compass, a drafting device which we assume familiar to the
reader.

7. Sum of segments. The sum of several given segments (AB,
CD, SF, Figure 5) is a segment which is obtained as follows. On
a line, pick any point Al and starting from it mark a segment MN
congruent to AB, then mark the segments NP congruent to CD,
and PQ congruent to EF, both going in the same direction as MN.
Then the segment MQ will be the sum of the segments AB, CD and
EF (which are called summands of this sum). One can similarly
obtain the sum of any number of segments.

A B C D E F
I —----—-—--—-i -1

M N p Q
I •—- --

Figure S

The sum of segments has the same properties as the sum of num-
bers. In particular it does not depend on the order of the summands
(the commutativity law) and remains unchanged when some of the
summands are replaced with their sum (the associativity law). For
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instance:

AB+CD+EFt= AB+EF+CD = EF+CD+AB=
and

AJ3+CD+EF= AB+(CD+EF) = CD+(AB+EF) =

8. Operations with segments. The concept of addition of
segments gives rise to the concept of subtraction of segments, and
multiplication and division of segments by a whole number. For
example, the difference of AB and CD (if AB > CD) is a segment
whose sum with CD is congruent to AB; the product of the segment
AB with the number 3 is the sum of three segments each congruent
to AB; the quotient of the segment AB by the number 3 is a third
part of AB.

If given segments are measured by certain linear units (for in-
stance, centimeters), and their lengths are expressed by the corre-
sponding numbers, then the length of the sum of the segments is
expressed by the sum of the1numbers measuring these segments, the
length of the difference is expressed by the difference of the numbers,
etc.

9. The circle. If, setting the compass to an arbitrary step and,
placing its pin leg at some point 0 of the plane (Figure 6), we begin to
turn the compass around this point, then the other leg equipped with
a pencil touching the plane will describe on the plane a continuous
curved line all of whose points are the same distance away from 0.
This curved line is called a circle, and the point 0 — its center.
A segment (OA, OB, OC in Figure 6) connecting the center with a
point of the circle is called a radius. All radii of the same circle are
congruent to each other.

Circles described by the compass set to the same radius are con-
gruent because by placing their centers at the same point one will
identify such circles with each other at all their points.

A line (MN, Figure 6) intersecting the circle at any two points
is called a secant.

A segment (EF) both of whose endpoints lie on the circle is called
a chord.

A chord (AD) passing through the center is called a diameter.
A diameter is the sum of two radii, and therefore all diameters of the
same circle are congruent to each other.

A part of a circle contained between any two points (for example,
ErnF) is called an arc.
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The chord connecting the endpoints of an arc is said to subtend
this arc.

An arc is sometimes denoted by the sign for instance, one

writes: EmF.
The part of the plane bounded by a circle is called a disk.2
The part of a disk contained between two radii (the shaded part

COB in Figure 6) is called a sector, and the part of the disk cut off
by a secant (the part EmF) is called a disk segment.

Figure 6

10. Congruent and non-congruent arcs. Two arcs of the
same circle (or of two congruent circles) are congruent if they can
be aligned so that their endpoints coincide. Indeed, suppose that
we align the arc AB (Figure 7) with the arc CD by identifying the
point A with the point C and directing the arc AB along the arc
CD. If, as a result of this, the endpoints B and D coincide, then all
the intermediate points of these arcs will coincide as well, since they

are the same distance away from the center, and therefore AB=CD.
But if B and D do not coincide, then the arcs are not congruent, and
the one which is a part of the other is considered smaller.

11. Sum of arcs. The sum of several given arcs of the same
radius is defined as an arc of that same radius which is composed
from parts congruent respectively to the given arcs. Thus, pick an
arbitrary point Al (Figure 7) of the circle and mark the part MN

2Often the word "circle" is used instead of "disk." However one should avoid
doing this since the use of the same term for different concepts may lead to
mistakes.

M
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congruent to AR. Next, moving in the same direction along the
circle, mark the part NP congruent to CD. Then the arc MP will
be the sum of the arcs AR and CD.

N

Adding arcs of the same'radius one may encounter the situation
when the sum of the arcs does not fit in the circle and one of the arcs
partially covers another. In this case the sum will be an arc greater
than the whole circle. For example, adding the arcs AmP and CuD
(Figure 8) we obtain the arc consisting of the whole circle and the
arc AD.

Similarly to addition of line segments, addition of arcs obeys the
commutativity and associativity laws.

From the concept of addition of arcs one derives the concepts
of subtraction of arcs, and multiplication and division of arcs by a
whole number the same way as it was done for line segments.

12. Divisions of geometry. The subject of geometry can be
divided into two parts: plane geometry, or planimetry, and solid
geometry, or stereometry. Planimetry studies properties of those
geometric figures all of whose elements fit the same plane.

Figure 7

BC

Figure 8
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EXERCISES

1. Give examples of geometric solids bounded by one, two, three,
four planes (or parts of planes).
2. Show that if a geometric figure is congruent to another geometric
figure, which is in its turn congruent to a third geometric figure, then
the first geometric figure is congruent to the third.
3. Explain why two straight lines in space can intersect at most at
one point.

4. Referring to §4, show that a plane not containing a given straight
line can intersect it at most at one point.

Give an example of a surface other than the plane which, like
the plane, can be superimposed on itself in a way that takes any one
given point to any other given point.
Remark: The required example is not unique.
6. Referring to §4, show that for any two points of a plane, there is a
straight line lying in this plane and passing through them, and that
such a line is unique.
7. Use a straightedge to draw a line passing through two points given
on a sheet of paper. Figure out how to check that the line is really
straight.
Hint: Flip the straightedge upside down.
8.* Fold a sheet of paper and, using the previous problem, check that
the edge is straight. Can you explain why the edge of a folded paper
is
Remark: There may exist several correct answers to this question.
9. Show that for each point lying in a plane there is a straight line
lying in this plane and passing through this point. How many such
lines are there?
10. Find surfaces other than the plane which, like the plane, together
with each point lying on the surface contain a straight line passing
through this point.
Hint: One can obtain such surfaces by bending a sheet of paper.
11. Referring to the definition of congruent figures given in §1, show
that any two infinite straight lines are congruent; that any two rays
are congruent.
12. On a given line, mark a segment congruent to four times a given
segment, using a compass as few times as possible.

3Stars * mark those exercises which we consider more difficult.
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13. Ts the sum (difference) of given segments unique? Give an ex-
ample of two distinct segments which both are sums of the given
segments. Show that these distinct segments are congruent.
14. Give an example of two non-congruent arcs whose endpoints co-
incide. Can such arcs belong to non-congruent circles? to congruent
circles? to the same circle?
15. Give examples of non-congruent arcs subtended by congruent
chords. Are there non-congruent chords subtending congruent arcs?
113. Describe explicitly the operations of subtraction of arcs, and
multiplication and division of an arc by a whole number.
17. Follow the descriptions of operations with arcs, and show that
multiplying a given arc by 3 and then dividing the result by 2, we
obtain an arc congruent to the arc resulting from the same operations
performed on the given arc in the reverse order.
18. Can sums (differences) of respectively congruent line segments,
or arcs, be non-congruent? Can sums (differences) of respectively
non-congruent segments, or arcs be congruent?
19. Following the definition of segments or arcs, explain why
addition of segments (or arcs) obeys the commutativity law.
Hint: Identify a segment (or arc) AB with BA.



Chapter 1

THE STRAIGHT LINE

I Angles

13. Preliminary concepts. A figure formed by two rays drawn
from the same point is called an angle. The rays which form the
angle are called its sides, and their common endpoint is called the
vertex of the angle. One should think of the sides as extending away
from the vertex indefinitely.

B

An angle is usually denoted by three uppercase letters of which
the middle one marks the vertex, and the other two label a point on
each of the sides. One says, e.g.: "the angle AOB" or "the angle
BOA" (Figure 9). It is possible to denote an angle by one letter
marking the vertex provided that no other angles with the same
vertex are present on the diagram. Sometimes we will also denote
an angle by a number placed inside the angle next to its vertex.

9

A

0

if
A

B

Figure 9 Figure 10



10 Chapter 1. THE STRAIGHT LINE

The sides of an angle divide the whole plane containing the angle
into two regions. One of them is called the interior region of the
angle, and the other is called the exterior one. Usually the interior
region is considered the one that contains the segments joining any
two points on the sides of the angle, e.g. the points A and B on the
sides of the angle AOB (Figure 9). Sometimes however one needs
to consider the other part of the plane as the interior one. In such
cases a special comment will be made regarding which region of the
plane is considered interior. Both cases are represented separately in
Figure 10, where the interior region in each case is shaded.

Rays drawn from the vertex of an angle and lying in its interior
(OD, OE, Figure 9) form new angles (AOD, DOE, EOB) which
are considered to be parts of the angle (AOB).

In writing, the word "angle" is often replaced with the symbol L.
For instance, instead of "angle AOB" one may write: LAOS.

14. Congruent and non-congruent angles. In accordance
with the general definition of congruent figures two angles are
considered congruent if by moving one of them it is possible to identify
it with the other.

Suppose, for example, that we lay the angle AOB onto the angle
A'O'B' (Figure 11) in a way such that the vertex 0 coincides with
the side OB goes along OS', and the interior regions of both angles
lie on the same side of the line 0'S'. If OA turns out to coincide with

then the angles are congruent. If OA turns out to lie inside or
outside the angle A'O'B', then the angles are non-congruent, and the
one, that lies inside the other is said to he smaller.

15. Sum of angles. The sum of angles AOB and A'O'B' (Fig-
ure 12) is an angle defined as follows. Construct an angle MNP
congruent to the given angle AOB, and attach to it the angle PNQ,
congruent to the given angle A'O'Bç as shown. Namely, the angle

Figure 11



1. Angles --

MNP should have with the angle PNQ the same vertex N, a com-
mon side NP, and the interior regions of both angles should lie on
the opposite sides of the common ray NP. Then the angle MNQ is
called the sum of the angles AQE and A'O'B'. The interior region
of the sum is considered the part of the plane comprised by the inte-
rior regions of the summands. This region contains the common side
(NP) of the summands. One can similarly form the sum of three
and more angles.

Figure 12

Addition of angles obeys the commutativity and associativity
laws just the same way addition of segments does. From the con-
cept of addition of angles one derives the concept of subtraction of
angles, and multiplication and division of angles by a whole number.

Very often one has to deal with the ray which divides a given
angle into halves; this ray is called the bisector of the angle (Figure
13).

16. Extension of the concept of angle. When one computes
the sum of angles some cases may occur which require special atten-
tion.

(1) It is possible that after addition of several angles, say, the

P

N

Figure 13 Figure 14 Figure 15



G1hapterL THE STRAIGHT LINE

three angles: AOB, BOC and COD (Figure 14), the side OD of the
angle COD will happen to be the continuation of the side OA of the
angle AOB. We will obtain therefore the figure formed by two half-
lines (OA and OD) drawn from the same point (0) and continuing
each other. Such a figure is also considered an angle and is called a
straight angle.

(2) It is possible that after the addition of several angles, say, the
five angles: AOB, BOC, COD, DOE and EOA (Figure 15) the side
OA of the angle BOA will happen to coincide with the side OA of
the angle AOB. The figure formed by such rays (together with the
whole plane surrounding the vertex 0) is also considered an angle
and is called a full angle.

(3) Finally, it is possible that added angles will not only fill in
the whole plane around the common vertex, but will even overlap
with each other, covering the plane around the common vertex for
the second time, for the third time, and so on. Such an angle sum is
congruent to one full angle added with another angle, or congruent
to two full angles added with another angle, and so on.

17. Central angle. The angle (AOB, Figure 16) formed by two
radii of a circle is called a central angle; such an angle and the arc
contained between the sides of this angle are said to correspond to
each other.

Central angles and their corresponding arcs have the following
properties.

In one circle, or two congruent circles:
(1) If central angles are congruent, then the correspond-

ing arcs are congruent;
(2) Vice versa, if the arcs are congruent, then the corre-

Figure 16 Figure 17
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sponding central angles are congruent.
Let ZA013 = LCOD (Figure 17); we need to show that the arcs

AB and CD are congruent too. Imagine that the sector AOB is
rotated about the center 0 in the direction shown by the arrow until
the radius 0A coincides with 00. Then due to the congruence of
the angles, the radius OB will coincide with OD; therefore the arcs
AB and CD will coincide too, i.e. they are congruent.

The second property is established similarly.
18. Circular and angular degrees. Imagine that a circle is

divided into 360 congruent parts and all the division points are con-
nected with the center by radii. Then around the center, 360 central
angles are formed which are congruent to each other as central angles
corresponding to congruent arcs. Each of these arcs is called a cir-
cular degree, and each of those central angles is called an angular
degree. Thus one can say that a circular degree is 1/360th part of
the circle, and the angular degree is the central angle corresponding
to it.

The degrees (both circular and angular) are further subdivided
into 60 congruent parts called minutes, and the minutes are further
subdivided into 60 congruent parts called seconds.

19. Correspondence between central angles and arcs. Let
AOB be some angle (Figure 18). Between its sides, draw an arc CD
of arbitrary radius with the center at the vertex 0. Then the angle
AOB will become the central angle corresponding to the arc CD.
Suppose, for example, that this arc consists of 7 circular degrees
(shown enlarged in Figure 18). Then the radii connecting the divi-
sion points with the center obviously divide the angle AOB into 7
angular degrees. More generally, one can say that an angle is mea-
sured by the arc corresponding to it, meaning that an angle contains
as many angular degrees, minutes and seconds as the corresponding

A

C

0 B

D

Figure 18 Figure 19
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arc contains circular degrees, minutes and seconds. For instance, if
the arc CD contains 20 degrees 10 minutes and 15 seconds of cir-
cular units, then the angle AQE consists of 20 degrees 10 minutes
and 15 seconds of angular units, which is customary to express as:
ZAOB = using the symbols 0, and " to denote degrees,
minutes and seconds respectively.

Units of angular degree do not depend on the radius of the circle.
Indeed, adding 360 angular degrees following the summation rule
described in §15, we obtain the full angle at the center of the circle.
Whatever the radius of the circle, this full angle will he the same.
Thus one can say that an angular degree is 1/360th part of the full
angle.

20. Protractor. This device (Figure 19) is used for measuring
angles. It consists of a semi-disk whose arc is divided into 180°. To
measure the angle DCE, one places the protractor onto the angle
in a way such that the, center of the semi-disk coincides with the
vertex of the angle, and the radius CB lies on the side CE. Then
the number of degrees in the arc contained between the sides of the
angle DCE shows the measure of the angle. Using the protractor
one can also draw an angle containing a given number of degrees (e.g.
the angle of 90°, 45°, 30°, etc.).

EXERCISES

20. Draw any angle and, using a protractor and a straightedge, draw
its bisector.
21. In the exterior of a given angle, draw another angle congruent
to it. Can you do this in the interior of the given angle?
22. How many common sides can two distinct angles have?
23. Can two non-congruent angles contain 55 angular degrees each?
24. Can two non-congruent arcs contain 55 circular degrees each?
What if these arcs have the same radius?
25. Two straight lines intersect at an angle containing 25°. Find the
measures of the remaining three angles formed by these lines.
26. Three lines passing through the same point divide the plane
into six angles. Two of them turned out to contain 25° and 55°
respectively. Find the measures of the remaining four angles.
27.* Using only compass, construct a 1° arc on a circle, if a 19° arc
of this circle is given.
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2 Perpendicular lines

21. Right, acute and obtuse angles. An angle of 90° (con-
gruent therefore to one half of the straight angle or to one quarter
of the full angle) is called a right angle. An angle smaller than the
right one is called acute, and a greater than right but smaller than
straight is called obtuse (Figure 20).

right acute obtuse

Figure 20

All right angles are, of course, congruent to each other since they
contain the same number of degrees.

The measure of a right angle is sometimes denoted by d (the
initial letter of the French word droit meaning "right").

22. Supplementary angles. Two angles (AO.B and BOC, Fig-
ure 21) are called supplementary if they have one common side,
and their remaining two sides form continuations of each other. Since
the sum of such angles is a straight angle, the sum of two supplemen-
tary angles is 180° (in other words it is congruent to the sum of two
right angles).

A

Figure 21 Figure 22

For each angle one can construct two supplementary angles. For
example, for the angle AOB (Figure 22), prolonging the side AO we
obtain one supplementary angle .BOC, and prolonging the side BO
we obtain another supplementary angle AOD. Two angles supple-
mentary to the same one are congruent to each other, since they both
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contain the same number of degrees, namely the number that sup-
plements the number of degrees in the angle AOB to 1800 contained
in a straight angle.

If AOB is a right angle (Figure 23), i.e. if it contains 90°, then
each of its supplementary angles COB and AOD must also be right,
since it contains 180° — 90°, i.e. 90°. The fourth angle COD has to
be right as well, since the three angles AOB, BOC and AOD contain
270° altogether, and therefore what is left from 360° for the fourth
angle COD is 90° too. Thus, if one of the four angles formed by two
intersecting lines (AC and BD, Figure 23) is right, then the other
three angles must be right as well.

23. A perpendicular and a slant. In the case when two
supplementary angles are not congruent to each other, their common
side (OB, Figure 24) is called a slant to the line (AC) containing
the other two sides. When, however, the supplementary angles are
congruent (Figure 25) and when, therefore, each of the angles is right,
the common side is called a perpendicular to the line containing
the other two sides. The common vertex (0) is called the foot of
the slant in the first case, and the foot of the perpendicular in
the second.

A I

Figure 23 Figure 24 Figure 25

Two lines (AC and BD, Figure 23) intersecting at a right angle
are called perpendicular to each other. The fact that the line AC
is perpendicular to the line BD is written: AC I BD.

Remarks. (1) If a perpendicular to a line AC (Figure 25) needs to
be drawn through a point 0 lying on this line, then the perpendicular
is said to be "erected" to the line AC, and if the perpendicular
needs to be drawn through a point B lying outside the line, then the
perpendicular is said to be "dropped" to the line (no matter if it is
upward, downward or sideways).

'Another name used for a slant is an oblique line.

B

C A

D



2. Perpendicular lines 17

(2) Obviously, at any given point of a given line, on either side of
it, one can erect a perpendicular, and such a perpendicular is unique.

24. Let us prove that from any point lying outside a given
line one can drop a perpendicular to this line, and such
perpendicular is unique.

Let a line AB (Figure 26) and an arbitrary point Al outside the
line be given. We need to show that, first, one can drop a perpendic-
ular from this point to AB, and second, that there is only one such
perpendicular.

Imagine that the diagram is folded so that the upper part of it
is identified with the lower part. Then the point M will take some
position N. Mark this position, unfold the diagram to the initial form
and then connect the points Al and N by a line. Let us show now that
the resulting line MN is perpendicular to AB, and that any other
line passing through M, for example MD, is not perpendicular to
AB. For this, fold the diagram again. Then the point IV! will merge
with N again, and the points C and D will remain in their places.
Therefore the line MC will be identified with NC, and MD with
ND. It follows that ZMCB = ZBCN and ZMDC = ZCDN.

But the angles MCB and BCN are supplementary. Therefore
each of them is right, and hence MN ± AB. Since MDN is not a
straight line (because there can be no two straight lines connecting
the points Al and N), then the sum of the two congruent angles
MDC and CDN is not equal to 2d. Therefore the angle MDC is
not right, and hence MD is not perpendicular to AB. Thus one can
drop no other perpendicular from the point Al to the line AB.

N

Figure 27

25. The drafting triangle. For practical construction of a per-

pendicular to a given line it is convenient to use a drafting triangle

made to have one of its angles right. To draw the perpendicular to a
line AB (Figure 27) through a point C lying on this line, or through

A

Figure 26
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a point D taken outside of this line, one can align a straightedge
with the line All, the drafting triangle with the straightedge, and
then slide the triangle along the straightedge until the other side of
the right angle hits the point C or D, and then draw the line CE.

26. Vertical angles. Two angles are called vertical if the sides
of one of them form continuations of the sides of the other. For
instance, at the intersection of t\vo lines All and CD (Figure 28)
two pairs of vertical angles are formed: AOD and COB, AOC and
DOE (and four pairs of supplementary angles).

Two vertical angles are congruent to each other (for ex-
ample, ZAOD = LBOC) since each of them is supplementary to the
same angle (to ZDOB or to ZAOC), and such angles, as we have
seen are congruent to each other.

Figure 29 Figure 29 Figure 30

27. Angles that have a common vertex. It is useful to re-

member the following simple facts about angles that have a common
vertex:

(1) If the sum of several angles (AOB, BOC, COD, DOE, Figure
29) that have a common vertex is congruent to a straight angle, then
the sum is 2d, i.e. 180°.

(2) If the sum of several angles (AOB, BOC, COD, DOE, EOA,
Figure 30) that have a common vertex is congruent to the full angle,
then it is 4d, i.e. 360°.

(3) If two angles (AOB and BOC, Figure 24) have a common
vertex (0) and a common side (OB) and add up to 2d (i.e. 180°),
then their two other sides (AO and OC) form continuations of each
other (i.e. such angles are supplementary).

EXERCISES

28. Is the sum of the angles 14°24'44" and 75°35'25" acute or obtuse?
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29. Five rays drawn from the same point divide the full angle into
five congruent parts. How many different angles do these five rays
form? Which of these angles are congruent to each other? Which of
them are acute? Obtuse? Find the degree measure of each of them.

30. Can both angles, whose sum is the straight angle, be acute?
obtuse?
31. Find the smallest number of acute (or obtuse) angles which add
up to the full angle.
32. An angle measures 38°20'; find the measure of its supplementary
angles.

33. One of the angles formed by two intersecting lines is 2d/5. Find
the measures of the other three.

34. Find the measure of an angle which is congruent to twice its
supplementary one.

35. Two angles ABC and CB.D having the common vertex B and
the common side BC are positioned in such a way that they do
not cover one another. The angle ABC = 100°20ç and the angle
CBD = 79°40'. Do the sides AB and BD form a straight line or a
bent one?
36. Two distinct rays, perpendicular to a given line, are erected at
a given point. Find the measure of the angle between these rays.

37. In the interior of an obtuse angle, two perpendiculars to its sides
are erected at the vertex. Find the measure of the obtuse angle, if
the angle between the perpendicularsis 4d/5.

Prove:

38. Bisectors of two supplementary angles are perpendicular to each
other.

39. Bisectors of two vertical angles are continuations of each other.

40. If at a point 0 of the line AB (Figure 28) two congruent angles
AOD and BOG are built on the opposites sides of AB, then their
sides OD and OC form a straight line.
41. If from the point 0 (Figure 28) rays OA, OB, 0C and OD
are constructed in such a way that ZAOC = ZDOB and ZAOD =
ZCOB, then OB is the continuation of OA, and OD is the contin-
uation of 0G.
Hint: Apply §27, statements 2 and 3.
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3 Mathematical propositions

28. Theorems, axioms, definitions. From what we have said
so far one can conclude that some geometric statements we consider
quite obvious (for example, the properties of planes and lines in §3
and §4) while some others are established by way of reasoning (for
example, the properties of supplementary angles in §22 and vertical
angles in §26). In geometry, this process of reasoning is a principal
way to discover properties of geometric figures. It would be instruc-
tive therefore to acquaint yourself with the forms of reasoning usual
in geometry.

All facts established in geometry are expressed in the form of
propositions. These propositions are divided into the following types.

Definitions. Definitions are propositions which explain what
meaning one attributes to a name or expression. For instance, we
have already encountered the definitions of central angle, right angle,
perpendicular lines, etc.

Axioms. Axioms 2 those facts which are accepted without
proof. This includes, for example, some propositions we encountered
earlier through any two points there is a unique line; if two
points of a line lie in a given plane then all points of this line lie in
the same plane.

Let us also mention the following axioms which apply to any kind
of quantities:

if each of two quantities is equal to a third quantity, then these
two quantities are equal to each other;

if the same quantity is added to or subtracted from equal quan-
tities, then the equality remains true;

if the same quantity is added to or subtracted from unequal quan-
tities, then the inequality remains unchanged, i.e. the greater quan-
tity remains greater.

Theorems. Theorems are those propositions whose truth is
found only through a certain reasoning process (proof). The fol-
lowing propositions may serve as examples:

if in one circle or two congruent circles some central angles are
congruent, then the corresponding arcs are congruent;

if one of the four angles formed by two intersecting lines turns
out to be right, then the remaining three angles are right as well.

21n geometry, some axioms are traditionafly called postulates.
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Corollaries. Corollaries are those propositions which follow di-
rectly from an axiom or a theorem. For instance, it follows from the
axiom "there is only one line passing through two points" that "two
lines can intersect at one point at most."

29. The content of a theorem. In any theorem one can distin-
guish two parts: the hypothesis and the conclusion. The hypothesis
expresses what is considered given, the conclusion what is required
to prove. For example, in the theorem "if central angles are con-
gruent, then the corresponding arcs are congruent" the hypothesis
is the first part of the theorem: "if central angles are congruent,"
and the conclusion is the second part: "then the corresponding arcs
are congruent;" in other words, it is given (known to us) that the
central angles are congruent, and it is required to prove that under
this hypothesis the corresponding arcs are congruent.

The hypothesis and the conclusion of a theorem may sometimes
consist of several separate hypotheses and conclusions; for instance,
in the theorem "if a number is divisible by 2 and by 3, then it is
divisible by 6," the hypothesis consists of two parts: "if a number is
divisible by 2" and "if the number is divisible by 3."

It is useful to notice that any theorem can be rephrased in such
a way that the hypothesis will begin with the word "if," and the
conclusion with the word "then." For example, the theorem "vertical
angles are congruent" can be rephrased this way: "if two angles are
vertical, then they are congruent."

30. The converse theorem. The theorem converse to a given
theorem is obtained by replacing the hypothesis of the given theorem
with the conclusion (or some part of -the conclusion), and the con-
clusion with the hypothesis (or some part of the hypothesis) of the
given theorem. For instance, the following two theorems are converse
to each other:

If central angles are congru- If arcs are congruent, then
ent, then the corresponding arcs the corresponding central angles
are congruent. are congruent.

If we call one of these theorems direct, then the other one should
be called converse.

In this example both theorems, the direct and the converse one,
turn out to be true. This is not always the case. For example the
theorem: "if two angles are vertical, then they are congruent" is true,
but the converse statement: "if two angles are congruent, then they
are vertical" is false.
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Indeed, suppose that in some angle the bisector is drawn (Figure
13). It divides the angle into two smaller ones. These smaller angles
are congruent to each other, but they are not vertical.

EXERCISES

42. Formulate definitions of supplementary angles and vertical
angles using the notion of sides of an angle.
43. Find in the text the definitions of an angle, its vertex and sides,
in terms of the notion of a ray drawn from a point.
44 In Introduction, find the definitions of a ray and a straight seg-
ment in terms of the notions of a straight line and a point. Are there
definitions of a point, line, plane, surface, geometric solid? Why?
Remark: These are examples of geometric notions which are consid-
ered undefinable.
45. Is the following proposition from §6 a definition, axiom or theo-
rem: "Two segments are congruent if they can be laid one onto the
other so that their endpoints coincide"?
46. In the text, find the definitions of a geometric figure, and congru-
ent geometric figures. Are there definitions of congruent segments,
congruent arcs, congruent angles? Why?
47. Define a circle.
48. Formulate the proposition converse to the theorem: "If a number
is divisible by 2 and by 3, then it is divisible by 6." Is the converse
proposition true? Why?
49. In the proposition from §10: "Two arcs of the same circle are
congruent if they can be aligned so that their endpoints coincide,"
separate the hypothesis from the conclusion, and state the converse
proposition. Is the converse proposition true? Why?
50. In the theorem: "Bisectors of supplementary angles are perpen-
dicular," separate the hypothesis from the conclusion, and formulate
the converse proposition. Is the converse proposition true?
51. Give an example that disproves the proposition: "If the bisectors
of two angles with a common vertex are perpendicular, then the
angles are supplementary." Is the converse proposition true?

4 Polygons and triangles

31. Broken lines. Straight segments not lying on the same line
are said to form a broken line (Figures 31, 32) if the endpoint of the
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first segment is the beginning of the second one, the endpoint of the
second segment is the beginning of the third one, and so on. These
segments are called sides, and the vertices of the angles formed by
the adjacent segments vertices of the broken line. A broken line is
denoted by the row of letters labeling its vertices and endpoints; for
instance; one says: "the broken line ABODE."

A broken line is called convex if it lies on one side of each of
its segments continued indefinitely in both directions. For example,
the broken line shown in Figure 31 is convex while the one shown in
Figure 32 is not (it lies not on one side of the line BC).

A broken line whose endpoints coincide is called closed (e.g. the
lines ABCDE or ADOBE in Figure 33). A closed broken line may
have self-intersections. For instance, in Figure 33, the line ADOBE
is self-intersecting, while ABCDE is not.

Figure 33

32. Polygons. The figure formed by a non-self-intersecting
closed broken line together with the part of the plane bounded by

B

E

A
D

Figure 31 Figure 32
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E
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this line is called a polygon (Figure 33). The sides and vertices
of this broken line are called respectively sides and vertices of
the polygon, and the angles formed by each two adjacent sides (in-
terior) angles of the polygon. More precisely, the interior of a
polygon's angle is considered that side which contains the interior
part of the polygon in the vicinity of the vertex. For instance, the
angle at the vertex P of the polygon MIVPQRS is the angle greater
than 2d (with the interior region shaded in Figure 33). The broken
line itself is called the boundary of the polygon, and the segment
congruent to the sum of all of its sides — the perimeter. A half of
the perimeter is often referred to as the semiperimeter.

A polygon is called convex if it is bounded by a convex broken
line. For example, the polygon ABCDE shown in Figure 33 is convex
while the polygon MIVPQRS is not. We will mainly consider convex
polygons.

Any segment (like AD, BE, ME, ..., Figure 33) which connects
two vertices not belonging to the same side of a polygon is called a
diagonal of the polygon.

The smallest number of sides in a polygon is three. Polygons are
named according to the number of their sides: triangles, quadri-
laterals, pentagons, hexagons, and so on.

The word "triangle" will often be replaced by the symbol
33. Types of triangles. tftiangles are classified by relative

lengths of their sides and by the magnitude of their angles. With
respect to the lengths of sides, triangles can be scalene (Figure 34)
— when all three sides have different lengths, isosceles (Figure 35)
— when two sides are congruent, and equilateral (Figure 36)
when all three sides are congruent.

Figure 34 Figure 35 Figure 36

With respect to the magnitude of angles, triangles can be acute
(Figure 34) — when all three angles are acute, right (Figure 37) —
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when among the angles there is a right one, and obtuse (Figure 38)
— when among the angles there is an obtuse one.

In a right triangle, the sides of the right angle are called legs,
and the side opposite to the right angle the hypotenuse.

34. Important lines in a triangle. One of a triangle's sides
is often referred to as the base, in which case the opposite vertex is
called the vertex of the triangle, and the other two sides are called
lateral. Then the perpendicular dropped from the vertex to the base
or to its continuation is called an altitude. Thus, if in the triangle
ABC (Figure 39), the side AC is taken for the base, then B is the
vertex, and BD is the altitude.

The segment (BE, Figure 39) connecting the vertex of a triangle
with the midpoint of the base is called a median. The segment (BF)
dividing the angle at the vertex into halves is called a bisector of
the triangle (which generally speaking differs from both the median
and the altitude).

3We will see in §43 that a triangle may have at most one right or obtuse angle.

Figure 37 Figure 38

B B

/
A D FE C A E C D

Figure 39



26 - Chapter 1. THE STRAIGHT LINE

Any triangle has three altitudes, three medians, and three bi-
sectors, since each side of the triangle can take on the role of the
base.

In an isosceles triangle, usually the side other than each of the
two congruent ones is called the base. Respectively, the vertex of an
isosceles triangle is the vertex of that angle is formed by the
congruent sides.

EXERCISES

52. Four points on the plane are vertices of three different quadri-
laterals. How can this happen?
53. Can a convex broken line self-intersect?
54. Is it possible to tile the entire plane by non-overlapping polygons
all of whose angles contain 140° each?
55. Prove that each diagonal of a quadrilateral either lies entirely in
its interior, or entirely in its exterior. Give an example of a pentagon
for which this is false.
56. Prove that a closed convex broken line is the boundary of a
polygon.
57. Is an equilateral triangle considered isosceles? Is an isosceles
triangle considered scalene?
58? How many intersection points can three straight lines have?
59. Prove that in a right triangle, three altitudes pass through a
common point.
60. Show that in any triangle, every two medians intersect. Is the
same true for every two bisectors? altitudes?
61. Give an example of a triangle such that only one of its altitudes
lies in its interior.

5 Isosceles triangles and symmetry

35. Theorems.
(1) In an isosceles triangle, the bisector of the angle at

the vertex is at the same time the median and the altitude.
(2) In an isosceles triangle, the angles at the base are

congruent.
Let L\ABC (Figure 40) be isosceles, and let the line BD be the

bisector of the angle B at the vertex of the triangle. It is required to
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prove that this bisector ED is also the median and the altitude.
Imagine that the diagram is folded along the line ED so that

ZAED falls onto ZCED. Then, due to congruence of the angles 1
and 2, the side AB will fall onto the side CE, and due to congruence
of these sides, the point will merge with C. Therefore DA will
coincide with DC, the angle 3 will coincide with the aiigle 4, and the
angle 5 with 6. Therefore

DA=DC, Z3=Z4, and Z5=Z6.

It follows from DA = DC that ED is the median. It follows from
the congruence of the angles 3 and 4 that these angles are right, and
hence ED is the altitude of the triangle. Finally, the angles 5 and 6
at the base of the triangle are congruent.

Figure 40

36. Corollary. We see that in the isosceles triangle ABC (Fig-

ure 40) the very same line ED possesses four properties: it is the
bisector drawn from the vertex, the median to the base, the altitude
dropped from the vertex to the base, and finally the perpendicular
erected from the base at its midpoint.

Since each of these properties determines the position of the line
ED unambiguously, then the validity of any of them implies all the
others. For example, the altitude dropped to the base of an isosceles
triangle is at the same time its bisector drawn from the vertex, the
median to the base, and the perpendicular erected at its midpoint.

37. Axial symmetry. If two points (A and A', Figure 41) are
situated on the opposite sides of a line a, on the same perpendicular
to this line, and the same distance away from the foot of the perpen-
dicular (i.e. if AF is congruent to FA'), then such points are called
symmetric about the line a.
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Two figures (or two parts of the same figure) are called symmetric
about a line if for each point of one figure (A, B, C, D, E, ..., Figure
41) the point symmetric to it about this line ( A', cc ...)
belongs to the other figure, and vice versa. A figure is said to have
an axis of symmetry a if this figure is symmetric to itself about
the line a, i.e. if for any point of the figure the symmetric point also
belongs to the figure.

B

A A'

For example, we have seen that the isosceles triangle ABC (Fig-
ure 42) is divided by the bisector BD into two triangles (left and
right) which can be identified with each other by folding the dia-
gram along the bisector. One can conclude from this that whatever
point is taken on the left half of the isosceles triangle, one can always
find the point symmetric to it in the right half. For instance, on the
side AB, take a point 1W. Mark on the side BC the segment Blti'
congruent to BM. We obtain the point A'!' in the triangle symmet-
ric to A'! about the axis BD. Indeed, is isosceles since
BA'! = EM'. Let F denote the intersection point of the segment
MM' with the bisector BD of the angle B. Then BK is the bisector
in the isosceles triangle MBM'. By §35 it is also the altitude and the
median. Therefore A'IA'I' is perpendicular to BD, and A'IF = M'F,
i.e. M and A'!' are situated on the opposite sides of BD, on the same
perpendicular to BD, and the same distance away from its foot F.
Thus in an isoseeles triangle, the bisector of the angle at the
vertex is an axis of symmetry of the triangle.

38. Remarks. (1) Two symmetric figures can he superimposed
by rotating one of them in space about the axis of symmetry until
the rotated figure falls into the original plane again. Conversely, if

Figure 41 Figure 42
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two figures can be identified with each other by turning the plane
in space about a line lying in the plane, then these two figures are
symmetric about this line.

(2) Although symmetric figures can be superimposed, they are
not identical in their position in the plane. This should be understood
in the following sense: in order to superimpose two symmetric figures
it is necessary to flip one of them around and therefore to pull it off
the plane temporarily; if however a figure is bound to remain in the
plane, no motion can generally speaking identify it with the figure
symmetric to it about a line. For example, Figure 43 shows two pairs
of symmetric letters: "b" and "d," and "p" and "q." By rotating the
letters inside the page one can transform "b" into "q," and "d" into
"p," but it is impossible to identify "b" or "q" with "d" or
without lifting the symbols off the page.

(3) Axial symmetry is frequently found in nature (Figure 44).

bd
pq

Figure 43

EXERCISES

62. How many axes of symmetry does an equilateral triangle have?
How about an isosceles triangle which is not equilateral?

How many axes of symmetry can a quadrilateral have?
64. A kite is a quadrilateral symmetric about a diagonal. Give an
example of: (a) a kite; (b) a quadrilateral which is not a kite but has
an axis of symmetry.
65. Can a pentagon have an axis of symmetry passing through two
(one, none) of its vertices?
66.* Two points A and B are given on the same side of a line MN.

Figure 44
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Find a point C on IV!N such that the line MN would make congruent
angles with the sides of the broken line ACE.

Prove theorems:

67. In an isosceles triangle, two medians are congruent, two bisectors

are congruent, two altitudes are congruent.
68. If from the midpoint of each of the congruent sides of an isosceles
triangle, the segment perpendicular to this side is erected and con-
tinued to its intersection with the other of the congruent sides of the
triangle, then these two segments are congruent.
69. A line perpendicular to the bisector of an angle cuts off congruent
segments on its sides.
70. An equilateral triangle is equlangular (i.e. all of its angles are
congruent).
71. Vertical angles are symmetric to each other with respect to the
bisector of their supplementary angles.

72. A triangle that has two axes of symmetry has three axes of
symmetry.
73. A quadrilateral is a kite if it has an axis of symmetry passing
through a vertex.
74. Diagonals of a kite are perpendicular.

6 Congruence tests for triangles

39. Preliminaries. As we know, two geometric figures are called

congruent if they can be identified with each other by superimposing.
Of course, in the identified triangles, all their corresponding elements,
such as sides, angles, altitudes, medians and bisectors, are congruent.
However, in order to ascertain that two triangles are congruent, there
is no need to establish congruence of all their corresponding elements.
It suffices only to verify congruence of some of them.

40. Theorems.
(1) SAS-test: If two sides and the angle enclosed by them

in one triangle are congruent respectively to two sides and
the angle enclosed by them in another triangle, then such
triangles are congruent.

(2) If one side and two angles adjacent to it in
one triangle are congruent respectively to one side and two

4SAS stands for "side—angle—side", ASA for "angle..side-angle and of course
SSS for "side-side-side."
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angles adjacent to it in another triangle, then such triangles
are congruent.

(3) SSS-test: If three sides of one triangle are congruent
respectively to three sides of another triangle, then such
triangles are congruent.AN

Figure 45

(1) Let ABC and A'B'C' be two triangles (Figure 45) such that

AC=A'C', AB=A'B', LA=LA'.

It is required to prove that these triangles are congruent.
Superimpose AABC onto AA'B'C' in such a way that A would

coincide with X the side AC would go along and the side AB
would lie on the same side of A'C' as A'B'. Then: since AC is
congruent to A'Cç the point C will merge with C'; due to congruence
of LA and LA', the side AB will go along and due to congruence
of these sides, the point B will merge with B'. Therefore the side
BC will coincide with B'C' (since two points can be joined by only
one line), and hence the entire triangles will be identified with each
other. Thus they are congruent.

(2) Let ABC and A'B'C' (Figure 46) be two triangles such that

LC=LC', LB=LB', CB=C'B'.

It is required to prove that these triangles are congruent. Superim-
pose AABC onto in such a way that the point C would
coincide with the side CB would go along C'Bç and the vertex A
would lie on the same side of C'B' as A'. Then: since CB is congru-
ent to C'Bç the point B will merge with and due to congruence of

5For this and some other operations in this section it might be necessary to
flip the triangle over.
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the angles B and and C and the side BA will go along B'A',
and the side CA will go along C'A'. Since two lines can intersect
only at one point, the vertex A will have to merge with A'. Thus the
triangles are identified and are therefore congruent.

Figure 46

(3) Let ABC and A'B'C' be two triangles such that

AB=A'B', BC=B'C', CA=C'A'.
It is required to prove that these triangles are congruent. Proving
this test by superimposing, the same way as we proved the first
two tests, turns out to be awkward, because knowing nothing about
the measure of the angles, we would not be able to conclude from
coincidence of two corresponding sides that the other sides coincide
as well. Instead of superimposing, let us apply juxtaposing.

Juxtapose and AA'B'C' in such a way that their congru-
ent sides AC and A'C' would coincide (i.e. A would merge with A'
and C with C'), and the vertices B and B' would lie on the oppo-
site sides of A'C'. Then will occupy the position AA'B"C'
(Figure 47). Joining the vertices B' and B" we obtain two isosceles
triangles B'A'B" and B'C'B" with the common base B'B". But in an
isosceles triangle, the angles at the base are congruent There-
fore LI = /2 and /3 = /4, and hence LA'B'C' = LA'B"C' = LB.
But then the given triangles must be congruent, since two sides and
the angle enclosed by them in one triangle are congruent respectively
to two sides and the angle enclosed by them in the other triangle.

Remark. In congruent triangles, congruent angles are opposed
to congruent sides, and conversely, congruent sides are opposed to
congruent angles.

The congruence tests just proved, and the skill of recognizing
congruent triangles by the above criteria facilitate solutions to many
geometry problems and are necessary in the proofs of many theo-
rems. These congruence tests are the principal means in discovering

A

C B
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properties of complex geometric figures. The reader will have many
occasions to see this.

B'

B"

EXERCISES

75. Prove that a triangle that has two congruent angles is isosceles.
76. Tn a given triangle, an altitude is a bisector. Prove that the
triangle is isosceles.
77. Tn a given triangle, an altitude is a median. Prove that the
triangle is isosceles.
78. On each side of an equilateral triangle ABC, congruent segments
AB', BC', and AC' are marked, and the points A', B', and C' are
connected by lines. Prove that the triangle A'B'C' is also equilateral.
79. Suppose that an angle, its bisector, and one side of this angle in
one triangle are respectively congruent to an angle, its bisector, and
one side of this angle in another triangle. Prove that such triangles
are congruent.
80. Prove that if two sides and the median drawn to the first of
them in one triangle are respectively congruent to two sides and the
median drawn to the first of them in another triangle, then such
triangles are congruent.
81. Give an example of two non-congruent triangles such that two
sides and one angle of one triangle are respectively congruent to two
sides and one angle of the other triangle.
82.* On one side of an angle A, the segments AB and AC are marked,
and on the other side the segments AB' = AB and AC' = AC. Prove
that the lines BC' and B'C meet on the bisector of the angle A.

B"
Figure 47
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83. Derive from the previous problem a method of constructing the
bisector using straightedge and compass.
84. Prove that in a convex pentagon: (a) if all sides are congruent,
and all diagonals are congruent, then all interior angles are congru-
ent, and (b) if all sides are congruent, and all interior angles are
congruent, then all diagonals are congruent.
85. Is this true that in a convex polygon, if all diagonals are congru-
ent, and all interior angles are congruent, then all sides are congru-
ent?

7 Inequalities in triangles

41. Exterior angles. The angle supplementary to an angle of
a triangle (or polygon) is called an exterior angle of this triangle
(polygon).

F

A

Figure 48 Figure 49

For instance (Figure 48), ZBCD, ZCBE, ZBAF are exterior
angles of the triangle ABC. In contrast with the exterior angles, the
angles of the triangle (polygon) are sometimes called interior.

For each interior angle of a triangle (or polygon), one can con-
struct two exterior angles (by extending one or the other side of the
angle). Such two exterior angles are congruent since they are vertical.

42. Theorem. An exterior angle of a triangle is greater
than each interior angle not supplementary to it.

For example, let us prove that the exterior angle BCD of AABC
(Figure 49) is greater than each of the interior angles A and B not
supplementary to it.

Through the midpoint E of the side BC, draw the median AE
and on the continuation of the median mark the segment EF con-
gruent to AE. The point F will obviously lie in the interior of the

C.
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angle BCD. Connect F with C by a segment. The triangles ABE
and EFC (shaded in Figure 49) are congruent since at the vertex E
they have congruent angles enclosed between two respectively con-
gruent sides. From congruence of the triangles we conclude that the
angles B and ECF, opposite to the congruent sides AE and EF,
are congruent too. But the angle ECF forms a part of the exterior
angle BCD and is therefore smaller than ZBCD. Thus the angle B
is smaller than the angle BCD.

By continuing the side BC past the point C we obtain the exterior
angle ACH congruent to the angle BCD. If from the vertex B, we
draw the median to the side AC and double the median by continuing
it past the side AC, then we will similarly prove that the angle A is
smaller than the angle ACH, i.e. it is smaller than the angle BCD.

AACP
Figure 50 Figure 51

43. Corollary. If in a triangle one angle is right or obtuse, then

the other two angles are acute.
Indeed, suppose that the angle C in AABC (Figure 50 or 51) is

right or obtuse. Then the supplementary to it exterior angle BCD
has to be right or acute. Therefore the angles A and B, which by the
theorem are smaller than this exterior angle, must both he acute.

44. Relationships between sides and angles of a triangle.
Theorems. In any triangle
(1) the angles opposite to congruent sides are congruent;
(2) the angle opposite to a greater side is greater.
(1) If two sides of a triangle are congruent, then the triangle is

isosceles, and therefore the angles opposite to these sides have to be
congruent as the angles at the base of an isosceles triangle

(2) Let in AABC (Figure 52) the side AB be greater than BC.
It is required to prove that the angle C is greater than the angle A.

On the greater side BA, mark the segment BD congruent to the
smaller side BC and draw the line joining D with C. We obtain an
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isosceles triangle DBC, which has congruent angles at the base, i.e.
LBDC = LBCD. But the angle BDC, being an exterior angle with
respect to is greater than the angle A, and hence the angle
LCD is also greater than the angle A. Therefore the angle BCA
containing LBCD as its part is greater than the angle A too.

A C

45. The converse theprems. In any triangle

(I) the sides opposite to congruent angles are congruent;

(2) the side opposite to a greater angle is greater.

(1) Let in L\ABC the angles A and C be congruent (Figure 53);
it is required to prove that AB = BC.

A C AA
Figure 53 Figure 54

Suppose the contrary is true, i.e. that the sides AB and BC are
not congruent. Then one of these sides is greater than the other,
and therefore according to the direct theorem, one of the angles A
and C has to be greater than the other. But this contradicts the
hypothesis that LA = LC. Thus the assumption that AL and BC
are non-congruent is impossible. This leaves only the possibility that
AB=BC.

B

D

Figure 52
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(2) Let in (Figure 54) the angle C be greater than the
angle A. It is required to prove that AD> BC.

Suppose the contrary is true, i.e. that AR is not greater than
BC. Then two cases can occur: either AR = BC or AD <BC.

According to the direct theorem, in the first case the angle C
would have been congruent to the angle A, and in the second case the
angle C would have been smaller than the angle A. Either conclusion
contradicts the hypothesis, and therefore both cases are excluded.
Thus the only remaining possibility is AR > BC.

Corollary.
(1) In an equilateral triangle all angles are congruent.

(2) In an equiangular triangle all sides are congruent.

46. Proof by contradiction. The method we have just used

to prove the converse theorems is called proof by contradiction,
or reductio ad absurdum. In the beginning of the argument the
assumption contrary to what is required to prove is made. Then by
reasoning on the basis of this assumption one arrives at a contradic-
tion (absurd). This result forces one to reject the initial assumption
and thus to accept the one that was required to prove. This way of
reasoning is frequently used in mathematical proofs.

47. A remark on converse theorems. It is a mistake, not
uncommon for beginning geometry students, to assume that the con-
verse theorem is automatically established whenever the validity of
a direct theorem has been verified. Hence the false impression that
proof of converse theorems is unnecessary at all. As it can be shown
by examples, like the one given in §30, this conclusion is erroneous.
Therefore converse theorems, when they are valid, require separate
proofs.

However, in the case of congruence or non-congruence of two sides
of a triangle ABC, e.g. the sides AR and BC, only the following
three cases can occur:

AB=BC, AB>BC, AB<Ra

Each of these three cases excludes the other two: say, if the first
case AR = BC takes place, then neither the 2nd nor the 3rd case
is possible. In the theorem of §44, we have considered all the three
cases and arrived at the following respective conclusions regarding
the opposite angles C and A:

ZC=LA, ZC>ZA, ZC<ZA.
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Each of these conclusions excludes the other two. We have also seen
in §45 that the converse theorems are true and can be easily proved
by reductio ad absurdum.

In general, if in a theorem, or several theorems, we address all pos-
sible mutually exclusive cases (which can occur regarding the magni-
tude of a certain quantity or disposition of certain parts of a figure),
and it turns out that in these cases we arrive at mutually exclusive
conclusions (regarding some other quantities or parts of the figure),
then we can claim a priori that the converse propositions also hold
true.

We will encounter this rule of convertibility quite often.
48. Theorem. In a triangle, each side is smaller than the

sum of the other two sides.
If we take a side which is not the greatest one in a triangle, then

of course it will be smaller than the sum of the other two sides.
Therefore we need to prove that even the greatest side of a triangle
is smaller than the sum of the other two sides.

In LIABC (Figure 55), the greatest side be AC. Continuing
the side AB past B mark on it the segment BD = BC and draw
DC. Since is isosceles, then LD = ZDCB. Therefore the
angle D is smaller than the angle DCA, and hence in

AD i.e. AC < AB + BD. Replacing
RD with BC we get

AC AB + BC

Corollary. From both sides of the obtained inequality, subtract
AB or BC:

AC—AB<BC, AC-BC<AB.

Reading these inequalities from right to left we see that each of the
sides BC and AR is greater than the difference of the other two sides.
Obviously, the same can also be said about the greatest side AC, and
therefore in a triangle, each side is greater than the difference of the
other two sides.

Remarks. (1) The inequality described in the theorem is often
called the triangle inequality.

(2) When the point B lies on the segment AC, the triangle in-
equality turns into the equality AC = AB + BC. More generally, if
three points lie on the same line (and thus do not form a triangle),
then the greatest of the three segments connecting these points is the
sum of the other two segments. Therefore for any three points it is
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still true that the segment connecting two of them is smaller
than or congruent to the sum of the other two segments.

A
L I,)Z E

Figure 56

49. Theorem. The line segment connecting any two points

is smaller than any broken line connecting these points.
If the broken line in question consists of only two sides, then the

theorem has already been proved in §48. Consider the case when the
broken line consists of more than two sides. Let AE (Figure 56) be
the line segment connecting the points A and E, and let ABCDE be
a broken line connecting the same points. We are required to prove
that AE is smaller than the sum AB + BC + CD + DE.

Connecting A with C and D and using the triangle inequality we
find:

AE<AD+DE,

Moreover, these inequalities cannot turn into equalities all at once.
Indeed, if this happened, then (Figure 57) D would lie on the segment
AE, C on AD, B on AB, i.e. ABCDE would iiot be a broken line,
but the straight segment AE. Thus adding the inequalities terniwise

AB AE = AD+DE ADAC+CD AC=AB÷BC/ \
A EA E A E

C

Figure 57

and subtracting AD and AC from both sides we get

AE < AB+BC+CD+DE.

B

C

Figure 55
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50. Theorem. If two sides of one triangle are congruent
respectively to two sides of another triangle, then:

(1) the greater angle contained by these sides is opposed
to the greater side;

(2) vice versa, the greater of the non-congruent sides is
opposed to the' greater angle.

B

C,

(1) Tn aSABC and we are given:

AB=A'B', AC=A'C', LA>LA'.

We are required to prove that BC > B'C'. Put onto
/SABC in a way (shown in Figure 58) such that the side A'C' would
coincide with AC. Since LA' < LA, then the side A'B' will lie inside
the angle A. Let z2xA'B'C' occupy the position AB"C (the vertex
B" may fall outside or inside of /SABC, or on the side BC, but the
forthcoming argument applies to all these cases). Draw the bisector
AD of the angle BAB" and connect D with Then we obtain two
triangles ABD and DAB" which are congruent because they have a
common side AD, AR = AB" by hypothesis, and LBAD = LBAD"
by construction. Congruence of the triangles implies RD =
From ADCB" we now derive: B"C < B"D + DC Replacing
B"D with RD we get

B"C c BD + DC, and hence B'C' C BC.

(2) Suppose in the same triangles ARC and A'B'C' we are given
that AB = A'Bç AC = A'C' and BC > B'C'; let us prove that
LA> LA'.

Assume the contrary, i.e. that the LA is not greater than LA'.
- Then two cases can occur: either LA = LA' or LA C LA'. In the
first case the triangles would have been congruent (by the SAS-test)

D

B"

Figure 58



& Right triangles

and therefore the side BC would have been congruent to which
contradicts the hypotheses. In the second case the side BC would
have been smaller than B'C' by part (1) of the theorem, which con-
tradicts the hypotheses too. Thus both of these cases are excluded;
the only case that remains possible is LA> LA'.

EXERG'ISES

86. Can an exterior angle of an isosceles triangle be smaller than the
supplementary interior angle? Consider the cases when the angle is:
(a) at the base, and (b) at the vertex.
87. Can a triangle have sides: (a) 1, 2, and 3 cm (centimeters) long?
(b) 2, 3, and 4 cm long?
88. Can a quadrilateral have sides: 2, 3, 4, and 10 cm long?

Prove theorems:
89. A side of a triangle is smaller than its semiperimeter.
90. A median of a triangle is smaller than its serniperimeter.
91 A median drawn to a side of a triangle is smaller than the
sernisum of the other two sides.
Hint: Double the median by prolonging it past the midpoint of the
first side.
92. The sum of the medians of a triangle is smaller than its perimeter
but greater than its semi-perimeter.
93. The sum of the diagonals of a quadrilateral is smaller than its
perimeter but greater than its semi-perimeter.
94. The sum of segments connecting a point inside a triangle with
its vertices is smaller than the semiperimeter of the triangle.

Given an acute angle XOY and an interior point A. Find a
point B on the side OX and a point C on the side OY such that the
perimeter of the triangle ABC is minimal.
Hint: Introduce points symmetric to A with respect to the sides of
the angle.

8 Right triangles
51. Comparative length of the perpendicular and a slant.
Theorem. The perpendicular dropped from any point to a

line is smaller than any slant drawn from the same point
to this line.
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Let AR (Figure 59) be the perpendicular dropped from a point
A to the line MN, and AC be any slant drawn from the same point
A to the line MN. It is required to show that AR <AC.

In the angle B is right, and the angle C is acute
Therefore LC < ZR, and hence AR c AC, as required.

Remark. By "the distance from a point to a line," one means the
shortest distance which is measured along the perpendicular dropped
from this point to the line.

M

A A

N

Figure 59

52. Theorem. If the perpendicular and some slants are
drawn to a line from the same point outside this line, then:

(1) if the feet of the slants are the same distance away
from the foot of the perpendicular, then such slants are con-
gruent;

(2) if the feet of two slants are not the same distance
away from the foot of the perpendicular, then the slant
whose foot is farther away from the foot of the perpendicu-
lar is greater.

(1) Let AC and AD (Figure 60) he two slants drawn frpm a
point A to the line MN and such that their feet C and D are the
same distance away from the foot B of the perpendicular AR, i.e.
CR = RD. It is required to prove that AC = AD.

In the triangles ARC and ARD, AR is a common side, and
beside this BC = RD (by hypothesis) and LARC = LARD (as right
angles). Therefore these triangles are congruent, and thus AC = AD.

(2) Let AC and AE (Figure 59) be two slants drawn from the
point A to the line MN and such that their feet are not the same
distance away from the foot of the perpendicular; for instance, let
RE> BC. It is required to prove that AE> AC.

C

Figure 60
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Mark ED = BC and draw AD. By part (1), AD = AC. Com-
pare AE with AD. The angle ADE is exterior with respect to

and therefore it is greater than the right angle. Therefore
the angle ADE is obtuse, and hence the angle AED must be acute

It foflows that LADE> LAED, therefore AE> AD, and
thus AE > AC.

53. The converse theorems. If some slants and the per-

pendicular are drawn to a line from the same point outside
this line, then:

(1) if two slants are congruent, then their feet are the
same distance away from the foot of the perpendicular;

(2) if two slants are not congruent, then the foot of the
greater one is farther away from the foot of the perpendic-
ular.

We leave it to the readers to prove these theorems (by the method
of reductio ad absurdum).

54. Congruence tests for right triangles. Since in right
triangles the angles contained by the legs are always congruent as
right angles, then right triangles are congruent:

(1) if the legs of one of them are congruent respectively to the legs
of the other;

(2) if a leg and the acute angle adjacent to it in one triangle are
congruent respectively to a leg and the acute angle adjacent to it in
the other triangle.

These two tests require no special proof, since they are particular
cases of the general SAS- and ASA-tests. Let us prove the following
two tests which apply to right triangles only.

55. Two tests requiring special proofs.
Theorems. Two right triangles are congruent:
(1) if the hypotenuse and an acute angle of one triangle

are congruent to respectively the hypotenuse and an acute
angle of the other.

(2) if the hypotenuse and a leg of one triangle are con-
gruent respectively to the hypotenuse and a leg of the other.

(1) Let ABC and A1B1C1 (Figure 61) be two right triangles such
that AB = A1 B1 and LA = LA1. It is required to prove that these

triangles are congruent.

Put onto B1 C1 in a way such that their congruent
hypotenuses coincide. By congruence of the angles A and A1, the
leg AC will go along A1C1. Then, if we assume that the point C



44 Chapter 1. THE STRAIGHT LINE

occupies a position C2 or C3 different from
C1 C1 and B1 c13) dropped from

the same point B' to the line A'C'. Since this is impossible we
conclude that the point C will merge with C1.

/4/Jo'
A C A, C2C, C3 A C A2 A, A3 C,

Figure 61 Figure 62

(2) Let (Figure 62), in the right triangles, it he given: AL = A1th
and BC = B1C1. It is required to prove that the triangles are congru-
ent. Put onto in a way such that their congruent
legs BC and B1C1 coincide. By congruence of right angles, the side
CA will go along C1 A1. Then, if we assume that the hypotenuse AR
occupies a position A2B1 or A3B1 different from A1B1, we will have
two congruent slants (A1 B1 and A2B1, or A1B1 and A3 B1) whose
feet are not the same distance away from the foot of the perpendic-
ular B1C1. Since this is impossible we conclude that AL will
he identified with A1B1.

EXERCISES

Prove theorems:
96. Each leg of a right triangle is smaller than the hypotenuse.
97. A right triangle can have at most one axis of symmetry.
98. At most two congruent slants to a given line can be drawn from
a given point.

Two isosceles triangles with a common vertex and congruent
lateral sides cannot fit one inside the other.
100. The bisector of an angle is its axis of symmetry.
101. A triangle is isosceles if two of its altitudes are congruent.
102. A median in a triangle is equidistant from the two vertices not
lying on it.
1 A line and a circle can have at most two common points.
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9 Segment and angle bisectors

56. The perpendicular bisector, i.e. the perpendicular to a seg-
ment erected at the midpoint of the segment, and the bisector of an
angle have very similar properties. To see the resemblance better we
will describe the properties in a parallel fashion.

(1) If a point (K, Fig-
ure 63) lies on the perpen-
dicular (MN) erected at the
midpoint of a segment (AR),
then the point is the same
distance away from the end-
points of the segment (i.e.
KA=KB).

Since MN ± AD and AO =
02, AK and KB are slants to

AR, and their feet are the same
distance away from the foot of
the perpendicular. Therefore
KA=KB.

(1) If a point (K, Figure
64) lies on the bisector (OM)
of an angle (AOB), then the
point is the same distance
away from the sides of the
angle (i.e. the perpendiculars
lCD and KC are congruent).

Since OIt'I bisects the angle,

the right triangles OCK and
ODK are congruent, as they
have the common hypotenuse
and congruent acute angles at
the vertex 0. Therefore KG =
KD.

(2) The converse theorem.

If a point (K, Figure 63) is the
same distance away from
the endpoints of the seg-
ment AR (i.e. if KA = KB),
then the point lies on the
perpendicular to AR passing
through its midpoint.

(2)The converse theorem.
If an interior point of an
angle (K, Figure 64) is the
same distance away from its
sides (i.e. if the perpendicu-
lars KG and KD are congruent)
then it lies on the bisector
of this angle.

/
A B

N

Figure 63

A B

Figure 64
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Through K, draw the line
MN ± AR. We get two right
triangles KAG and K.BO which
are congruent as having congru-
ent hypotenuses and the com-
mon leg KG. Therefore the line
MN drawn through K to be
perpendicular to AR bisects it.

Through 0 and K, draw
the line OM. Then we get
two right triangles OCK and
ODK which are congruent as
having the common hypotenuse
and the congruent legs CK and
DIC. Hence they have congru-
ent angles at the vertex 0, and
therefore the line GM drawn to
pass through K bisects the angle
A0B.

57. Corollary. From the two proven theorems (direct and con-
verse) one can also derive the following theorems:

If a point does not lie on
the perpendicular erected at the
midpoint of a segment then the
point is unequal distances away
from the endpoints of this seg-
ment.

If an interior point of an an-
gle does not lie on the ray bisect-
ing it, then the point is unequal
distances away from the sides of
this angle.

We leave it to the readers to prove these theorems (using the
method reductio ad absurdum).

58. Geometric locus. The geometric locus of points satis-
fying a certain condition is the curve (or the surface in the space)
or, more generally, the set of points, which contains all the points
satisfying this condition and contains no points which do not satisfy
it.

For instance, the geometric locus of points at a given distance r
from a given point C is the circle of radius r with the center at the
point C. As it follows from the theorems of §56, §57:

The geometric locus of points equidistant from two given points
is the perpendicular to the segment connecting these points, passing
through the midpoint of the segment.

The geometric locus of interior points of an angle equidistant from
its sides is the bisector of this angle.

59. The inverse theorem. If the hypothesis and the conclusion
of a theorem are the negations of the hypothesis and the conclusion
of another theorem, then the former theorem is called inverse to the
latter one. For instance, the theorem inverse to: "if the digit sum
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is divisible by 9, then the number is divisible by 9" is: "if the digit
sum is not divisible by 9, then the number is not divisible by 9."

It is worth mentioning that the validity of a direct theorem does
not guarantee the validity of the inverse one: for example, the inverse
proposition "if not every summand is divisible by a certain number
then the sum is not divisible by this number" is false while the direct
proposition is true.

The theorem described in §57 (both for the segment and for the
angle) is inverse to the (direct) theorem described in §56.

60. Relationships between the theorems: direct, con-
verse, inverse, and contrapositive. For better understanding
of the relationship let us denote the hypothesis of the direct theorem
by the letter A, and the conclusion by the letter B, and express the
theorems concisely as:
(1) Direct theorem: if A is true, then B is true;
(2) Converse theorem: if B is true, then A is true;
(3) Inverse theorem: if A is false, then B is false;
(4) Contrapositive theorem: if B is false, then A is false.

Considering these propositions it is not hard to notice that the
first one is in the same relationship to the fourth as the second one to
the third. Namely, the propositions (1) and (4) can be transformed
into each other, and so can the propositions (2) and (3). Indeed, from
the proposition: "if A is true, then B is true" it follows immediately
that "if B is false, then A is false" (since if A were true, then by
the first proposition B would have been true too); and vice versa,
from the proposition: "if B is false, then A is false" we derive: "if
A is true, then B is true" (since if B were false, then A would have
been false as well). Quite similarly, we can check that the second
proposition follows from the third one, and vice versa.

Thus in order to make sure that all the four theorems are valid,
there is no need to prove each of them separately, but it suffices to
prove only two of them: direct and converse, or direct and inverse.

EXERCISES

104. Prove as a direct theorem that a point not lying on the perpen-
dicular bisector of a segment is not equidistant from the endpoints
of the segment; namely it is closer to that endpoint which lies on the
same side of the bisector.
105. Prove as a direct theorem that any interior point of an angle
which does not lie on the bisector is not equidistant from the sides
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of the angle.
106. Prove that two perpendiculars to the sides of an angle erected
at equal distances from the vertex meet on the bisector.
107. Prove that if A and and B and B' are two pairs of points
symmetric about some line XY, then the four points A, B lie
on the same circle.
108. Find the geometric locus of vertices of isosceles triangles with
a given base.
109. Find the geometric locus of the vertices A of triangles ABC
with the given base BC and such that LB> LC.
110. Find the geometric locus of points equidistant from two given
intersecting infinite straight lines.
111 Find the geometric locus of points equidistant from three given
infinite straight lines, intersecting pairwise.
112. For theorems from §60: direct, converse, inverse, and contra-
positive, compare in which of the following four cases each of them
is true: when (a) A is true and B is true, (b) A is true but B is false,
(c) A is false but B is true? and (d) A is false and B is false.
113. By definition, the negation of a proposition is true whenever
the proposition is false, and false whenever the proposition is true.
State the negation of the proposition: "the digit sum of every mul-
tiple of 3 is divisible by 9." Is this proposition true? Is its negation
true?
114. Formulate affirmatively the negations of the propositions:
(a) in every quadrilateral, both diagonals lie inside it; (b) in ev-
ery quadrilateral, there is a diagonal that lies inside it; (c) there
is a quadrilateral whose both diagonals lie inside it; (d) there is a
quadrilateral that has a diagonal lying outside it. Which of these
propositions are true?

10 Basic construction problems

61. Preliminary remarks. Theorems we proved earlier allow
us to solve some construction problems. Note that in elementary
geometry one considers those constructions which can be performed
using only straightedge and compass. 6

62. Problem 1. To construct a triangle with the given
three sides ci, 5 and c (Figure 65).

6As we will see, the use of the drafting triangle, which can be allowed for
saving time in the actual construction, is unnecessary in principle.
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On any line MN, mark the segment GB congruent to one of the
given sides, say, a. Describe two arcs centered at the points C and
B of radii congruent to b and to c. Connect the point A, where these
arcs intersect, with B and with C. The required triangle is ABC.

a A

b

C C

B

Figure 65

Remark. For three segments to serve as sides of a triangle, it is
necessary that the greatest one is smaller than the sum of the other
two

63. Problem 2. To construct an angle congruent to the
given angle ABC and such that one of the sides is a given
line MN, and the vertex is at a point 0 given on the line
(Figure 66).

BA E

A M

Figure 66

Between the sides of the given angle, describe an arc EF of any
radius centered at the vertex B, then keeping the same setting of the
compass place its pin leg at the point 0 and describe an arc PQ.
Furthermore, describe an arc ab centered at the point P with the ra-
dius equal to the distance between the points E and F. Finally draw
a line through 0 and the point R (the intersection of the two arcs).
The angle ROP is congruent to the angle ABC because the triangles
R0P and FBE are congruent as having congruent respective sides.

64. Problem 3. To bisect a given angle (Figure 67), or in
other words, to construct the bisector of a given angle or to
draw its axis of symmetry.

M
C

N

b

P N
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Between the sides of the angle, draw an arc DE of arbitrary
radius centered at the vertex B. Then, setting the compass to an
arbitrary radius, greater however than half the distance between D
and E (see Remark to Problem 1), describe two arcs centered at D
and E so that they intersect at some point F. Drawing the line BF
we obtain the bisector of the angle ABC.

For the proof, connect the point F with D and E by segments. We
obtain two triangles BEF and BDF which are congruent since BF
is their common side, and BD = BE and DE = EF by construction.
The congruence of the triangles implies: ZABF = ZCBF.

C

/ \F

¶ B
C

Figure 68

65. Problem 4. From a given point C on the line AB, to
erect a perpendicular to this line (Figure 68).

On both sides of the point C on the line AB, mark congruent
segments CD and CE (of any length). Describe two arcs centered
at D and E of the same radius (greater than CD) so that the arcs
intersect at a point F. The line passing through the points C and F
will be the required perpendicular.

Indeed, as it is evident from the construction, the point F will
have the same distance from the points D and F; therefore it will lie
on the perpendicular to the segment AB passing through its midpoint

Since the midpoint is C, and there is only one line passing
through C and F, then FC I DE.

66. Problem 5. From a given point A, to drop a perpen-
dicular to a given line BC (Figure 69).

Draw an arc of arbitrary radius (greater however than the dis-
tance from A to BC) with the center at A so that it intersects BC
at some points D and F. With these points as centers, draw two
arcs of the same arbitrary radius (greater however than so
that they intersect at some point F. The line AF is the required
perpendicular.

A A

Figure 67
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Indeed, as it is evident from the construction, each of the points
A and F is equidistant from D and .E, and all such points lie on
the perpendicular to the segment AD passing through its midpoint

A

A_

_B

/
'N'

Figure 69 Figure 70

67. Problem 6. To draw the perpendicular to a given seg-

ment AR through its midpoint (Figure 70); in other words, to

construct the axis of symmetry of the segment AD.
Draw two arcs of the same arbitrary radius (greater than

A and B, so that they intersect each other at some points
C and D. The line CD is the required perpendicular.

Indeed, as it is evident from the construction, each of the points
C and D is equidistant from A and B, and therefore must lie on the
symmetry axis of the segment AB.

Problem 7. To bisect a given straight segment (Figure 70).
It is solved the same way as the previous problem.

68. Example of a more complex problem. The basic con-
structions allow one to solve more complicated construction prob-
lems. As an illustration, consider the following problem.

Problem. To construct a triangle with a given base b, an angle
a at the base, and the sum s of the other two sides (Figure 71). To
work out a solution plan, suppose that the problem has been solved,
i.e. that a triangle ABC has been found such that the base AC =
LA = a and AR + BC = s. Examine the obtained diagram. We
know how to construct the side AC congruent to b and the angle A
congruent to a. Therefore it remains on the other side of the angle
to find a point B such that the sum AR + BC is congruent to s.
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Continuing AB past B, mark the segment AD congruent to s. Now
the problem reduces to finding on AD a point B which would be the
same distance away from C and D. As we know such a point
must lie on the perpendicular to CD passing through its midpoint.
The point will be found at the intersection of this perpendicular with
AD.

5

b

A

Figure 71

Thus, here is the solution of the problem: construct (Figure 71)
the angle A congruent to a. On its sides, mark the segments AC = b

and AD = .s, and connect the point D with C. Through the midpoint
of CD, construct the perpendicular BE. Connect its intersection
with AD, i.e. the point B, with C. The triangle ABC is a solution
of the problem since AC = b, LA = a and AB + BC = s (because
BD = BC).

Examining the construction we notice that it is not always pos-
sible. Indeed, if the sum s is too small compared to b, then the
perpendicular EB may miss the segment AD (or intersect the con-
tinuation of AD past A or past D). In this case the construction
turns out impossible. Moreover, independently of the construction
procedure, one can see that the problem has no solution if s < b or
$ = b, because there is no triangle in which the sum of two sides is
smaller than or congruent to the third side.

In the case when a solution exists, it turns out to be unique, i.e.
there exists only one triangle, satisfying the requirements of the

7There are infinitely many triangles satisfying the requirements of the problem,
but they are all congruent to each other, and so it is customary to say that the
solution of the problem is unique.

0

E

C
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problem, since the perpendicular BE can intersect AD at one point
at most.

69. RemarkS The previous example shows that solution of a
complex construction problem should consist of the following four
stages.

(1) Assuming that the problem has been solved, we can draft
the diagram of the required figure and, carefully examining it, try
to find those relationships between the given and required data that
would allow one to reduce the problem to other, previously solved
problems. This most important stage, whose aim is to work out a
plan of the solution, is called analysis.

(2) Once a plan has been found, the construction following it
can be executed.

(3) Next, to validate the plan, one shows on the basis of known
theorems that the constructed figure does satisfy the requirements
of the problem. This stage is called synthesis.

(4) Then we ask ourselves: if the problem has a solution for
any given data, if a solution is unique or there are several ones,
are there any special cases when the construction simplifies or, on
the contrary, requires additional examination. This solution stage is
called research.

When a problem is very simple, and there is no doubt about possi-
bility of the solution, then one usually omits the analysis and research
stages, and provides only the construction and the proof. This was
what we did describing our solutions of the first seven problems of
this section; this is what we are going to do later on whenever the
problems at hand will not he too complex.

EXERCISES

Construct:

115. The sum of two, three, or more given angles.
116. The difference of two angles.
117. Two angles whose sum and difference are given.
118. Divide an angle into 4, 8, 16 congruent parts.
119. A line in the exterior of a given angle passing through its vertex
and such that it would form congruent angles with the sides of this
angle.
120. A triangle: (a) given two sides and the angle between them;
(h) given one side and both angles adjacent to it; (c) given two sides
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and the angle opposite to the greater one of them; (d) given two sides
and the angle opposite to the smaller one of them (in this case there
can he two solutions, or one, or none).
121. An isosceles triangle: (a) given its base and another side;
(h) given its base and a base angle; (c) given its base angle and
the opposite side.
122. A right triangle: (a) given both of its legs; (b) given one of the
legs and the hypotenuse; (c) given one of the legs and the adjacent
acute angle.
123. An isosceles triangle: (a) given the altitude to the base and
one of the congruent sides; (b) given the altitude to the base and the
angle at the vertex; (c) given the base and the altitude to another
side.
124. A right triangle, given an acute angle and the hypotenuse.
125. Through an interior point of an angle, construct a line that
cuts off congruent segments on the sides of the angle.
126. Through an exterior point of an angle, construct a line which
would cut off congruent se'gments on the sides of the angle.
127. Find two segments whose sum and difference are given.
128. Divide a given segment into 4, 8, 16 congruent parts.
129. On a given line, find a point equidistant from two given points
(outside the line).
130. Find a point equidistant from the three vertices of a given
triangle.
131. On a given line intersecting the sides of a given angle, find a
point equidistant from the sides of the angle.
132. Find a point equidistant from the three sides of a given triangle.
133. On an infinite line AB, find a point C such that the rays CM
and CN connecting C with two given points M and N situated on
the same side of AB would form congruent angles with the rays CA
and CB respectively.
134. Construct a right triangle, given one of its legs and the sum of
the other leg with the hypotenuse.
135. Construct a triangle, given its base, one of the angles adjacent
to the base, and the difference of the other two sides (consider two
cases: (1) when the smaller of the two angles adjacent to the base is
given; (2) when the greater one is given).
136. Construct a right triangle, given one of its legs and the differ-
ence of the other two sides.
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137. Given an angle A and two points B and C situated one on one
side of the angle and one on the other, find: (1) a point M equidistant
from the sides of the angle and such that MB = MC; (2) a point
N equidistant from the sides of the angle and such that NB = BC;
(3) a point P such that each of the points B and C would be the
same distance away from A and P.
138. Two towns are situated near a straight railroad line. Find the
position for a railroad station so that it is equidistant from the towns.
139. Given a point A on one of the sides of an angle B. On the
other side of the angle, find a point C such that the sum CA + GB
is congruent to a given segment.

11 Parallel lines

70. Definitions. Two lines are called parallel if they lie in
the same plane and do not intersect one another no matter how far
they are extvnded in both directions.

Tn writing, parallel lined are denoted by the symbol jJ. Thus, if
two lines AB and GD are parallel, one \vrites AB]jGD.

Existence of parallel lines is established by the following theorem.
71. Theorem. Two perpendiculars (AB and CD, Figure 72)

to the same line (It'IN) cannot intersect no matter how far
they are extended.

Indeed, if such perpendiculars could intersect at some point F,
then two perpendiculars to the line MN would be dropped from this
point, which is impossible Thus two perpendiculars to the
same line are parallel to each other.

P

A C

Figure 72
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72. Names of angles formed by intersection of two lines
by a transversal. Let two lines AR and CD (Figure 73) he inter-
sected by a third line MN. Then 8 angles are formed (we labeled
them by numerals) which carry pairwise the following names:

corresponding angles: 1 and 5, 4 and 8, 2 and 6, 3 and 7;
alternate angles: 3 and 5, 4 and 6 (interior); 1 and 7, 2 and 8

(exterior);
same-side angles: 4 and 5, 3 and 6 (interior); 1 and 8, 2 and 7

(exterior).

When two lines (AB and CD,
third line (MN), and it turns

(1) some corresponding angles are congruent, or
(2) some alternate angles are congruent, or
(3) the sum of some same-side interior or same-side
exterior angles is 2d,

then these two lines are parallel.
Suppose, for example, that the corresponding angles 2 and 6 are

congruent. We are required to show that in this case AB MCD. Let us
assume the contrary, i.e. that the lines AR and CD are not parallel.
Then these lines intersect at some point P lying on the right of MN
or at some point P' lying on the left of MN. If the intersection is at
F, then a triangle is formed for which the angle 2 is exterior, and the
angle 6 interior not supplementary to it. Therefore the angle 2 has to
be greater than the angle 6 which contradicts the hypothesis.
Thus the lines AR and CD cannot intersect at any point P on the
right of MN. If we assume that the intersection is at the point
then a triangle is formed for which the angle 4, congruent to the

A

C

B

Figure 73

73. Tests for parallel lines.
Figure 74) are intersected by a
out that:
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angle 2, is interior and the angle 6 is exterior not supplementary to
it. Then the angle 6 has to be greater than the angle 4, and hence
greater than the angle 2, which contradicts the hypothesis. Therefore
the lines AR and CD cannot intersect at a point lying on the left
of MN either. Thus the lines cannot intersect anywhere, i.e. they
are parallel. Similarly, one can prove that ARIJCD if LI = L5, or
L3 = L7, etc.

M

A

43

C7? D

Figure 74 Figure 75

D

Suppose now that L4+L5 = 2d. Then we conclude that L4 = L6
since the sum of angle 6 with the angle 5 is also 2d. But if L4 = L6,
then the lines AR and CD cannot intersect, since if they did the
angles 4 and 6 (of which one would have been exterior and the other
interior not supplementary to it) could not be congruent.

74. Problem. Through a given point LVI (Figure 75), to construct
a line parallel to a given line AR.

A simple solution to this problem consists of the following. Draw
an arc CD of arbitrary radius centered at the point Al. Next, draw
the arc ME of the same radius centered at the point C. Then draw
a small arc of the radius congruent to ME centered at the point C
so that it intersects the arc CD at some point F. The line MF will
be parallel to AR.

Figure 76

M

A
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To prove this, draw the auxiliary line MC. The angles I and
2 thus formed are congruent by construction (because the triangles
EMC and MCF are congruent by the SSS-test), and when alternate
angles are congruent, the lines are parallel.

For practical construction of parallel lines it is also convenient to
use a drafting triangle and a straightedge as shown in Figure 76.

ABC_
Figure 77 Figure 78

75. The parallel postulate. Through a given point, one
cannot draw two different lines parallel to the same line.

Thus, if (Figure 77) CEllAR, then no other line CE' passing
through the point C can be parallel to AR, i.e. CE' will meet AR
when extended.

It turns out impossible to prove this proposition, i.e. to derive it
as a consequence of earlier accepted axioms. It becomes necessary
therefore to accept it as a new assumption (postulate, or axiom).

M

2<>7
B

C D/F

NI
Figure 79

i-i----
A E B

11
C F D

Figure 80

76. Corollary. (1) If CEllAR (Figure 77), and a third line CE'
intersects one of these two parallel lines, then it intersects the other
as well, because otherwise there would be two different lines CE and
CE' passing through the same point C and parallel to AR, which is
impossible.
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(2) If each of two lines a and b (Figure 78) is parallel to the same
third line c, then they are parallel to each other.

Indeed, if we assume that the lines a and b intersect at some point
M, there would be two different lines passing through this point and
parallel to c, which is impossible.

77. Angles formed by intersection of parallel lines by a
transversal.

Theorem (converse to Theorem of §73). If two parallel lines
(AR and CD, Figure 79) are intersected by any line (MN),
then:

(1) corresponding angles are congruent;
(2) alternate angles are congruent;
(3) the sum of same-side interior angles is 2d;
(4) the sum of same-side exterior angles is 2d.
Let us prove for example that if ABIICD, then the corresponding

angles a and b are congruent.
Assume the contrary, i.e. that these angles are not congruent (let

us say /1 > /2). Constructing /MEB' = /2 we then obtain a line
A'S' distinct from AR and have therefore two lines passing through
the point E and parallel to the same line CD. Namely, ABIICD by
the hypothesis of the theorem, and A'B']ICD due to the congruence
of the corresponding angles MEB' and 2. Since this contradicts the
parallel postulate, then our assumption that the angles 1 and 2 are
not congruent must be rejected; we are left to accept that /1 = /2.

Other conclusions of the theorem can be proved the same way.
Corollary. A perpendicular to one of two parallel lines is per-

pendicular to the other one as well.
Indeed, if AB]ICD (Figure 80) and ME ± AR, then firstly ME,

which intersects AB, will also intersect CD at some point F, and
secondly the corresponding angles 1 and 2 will be congruent. But
the angle 1 is right, and thus the angle 2 is also right, i.e. ME ± CD.

78. Tests for non-parallel lines. From the two theorems: di-
rect and its converse it follows that the inverse
theorems also hold true, i.e.:

If two lines are intersected by a third one in a way such that
(1) corresponding angles are not congruent, or (2) alternate interior
angles are not congruent, etc., then the two lines are not parallel;

If two lines are not parallel and are intersected by a third one,
then (1) corresponding angles are not congruent, (2) alternate interior
angles are not congruent, etc. Among all these tests for non-parallel
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lines (which are easily proved rednctio ad absurdum), the following
one deserves special attention:

If the sum of two same-side interior angles (1 and 2, Fig-
ure 81) differs from 2d, then the two lines when extended far
enough will intersect, since if these lines did not intersect, then
they would be parallel, and then the sum of same-side interior angles
would be 2d, which contradicts the hypothesis.

/JD

Figure 81

This proposition (supplemented by the statement that the lines
intersect on that side of the transversal on which the sum of the same-

side interior angles is smaller than 2d) was accepted without proof

by the famous Greek geometer Euclid (who lived in the 3rd century
B.C.) in his Elements of geometry, and is known as Euclid's pos-
tulate. Later the preference was given to a simpler formulation: the
parallel postulate stated in §75.

A C

2D

Figure 82

Let us point out two more tests for non-parallelism which will be
used later on:

(1) A perpendicular (AR, Figure 82) and a slant (CD) to
the same line (EF) intersect each other, because the sum of
same-side interior angles I and 2 differs from 2d.

Figure 83
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(2) Two lines (AR and CD, Figure 83) perpendicular to two
intersecting lines (FE and FG) intersect as well.

Indeed, if we assume the contrary, i.e. that ABIICD, then the
line FD, being perpendicular to one of the parallel lines (CD), will
be perpendicular to the other (A 8), and thus two perpendiculars
from the same point F to the same line AR will be dropped, which
is impossible.

79. Angles with respectively parallel sides.
Theorem. If the sides of one angle are respectively parallel

to the sides of another angle, then such angles are either
congruent or add up to 2d.

Consider separately the following three cases (Figure 84).
(1) Let the sides of the angle 1 be respectively parallel to the

sides of the angle 2 and, beside this, the directions of the respective
sides, when counted away from the vertices (as indicated by arrows
on the diagram), happen to be the same.

Extending one of the sides of the angle 2 until it meets the non-
parallel to it side of the angle 1, we obtain the angle 3 congruent
to each of the angles 1 and 2 (as corresponding angles formed by a
transversal intersecting parallel lines). Therefore Li = L2.

(2) Let the sides of the angle 1 be respectively parallel to the
sides of the angle 2, but the respective sides have opposite directions
away from the vertices.

Extending both sides of the angle 4, we obtain the angle 2, which
is congruent to the angle 1 (as proved earlier) and to the angle 4 (as
vertical to it). Therefore L4 = LI.

(3) Finally, let the sides of the angle 1 be respectively parallel to
the sides of the angles 5 and 6, and one pair of respective sides have

Fiyure 84
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the same directions, while the other pair, the opposite ones.
Extending one side of the angle 5 or the angle 6, we obtain the an-

gle 2, congruent (as proved earlier) to the angle 1. But
/5(or /6) + /2 = 2c1 (by the property of supplementary angles).
Therefore /5(or /6) + /1 = 2d too.

Thus angles with parallel sides turn out to be congruent when the
directions of respective sides away from the vertices are either both
the same or both opposite, and when neither condition is satisfied,
the angles add up to 2d.

Remark. One could say that two angles with respectively parallel
sides are congruent when both are acute or both are obtuse. In some
cases however it is hard to determine a priori if the angles are acute
or obtuse, so comparing directions of their sides becomes necessary.

80. Angles with respectively perpendicular sides.
Theorem. If the sides of one angle are respectively per-

pendicular to the sides of another one, then such angles are
either congruent or add up to 2d.

Let the angle ABC labeled by the number 1 (Figure 85) be one
of the given angles, and the other be one of the four angles 2, 3, 4,
5 formed by two intersecting lines, of which one is perpendicular to
the side AB and the other to the side BC.

From the vertex of the angle 1, draw two auxiliary lines: ED ±
BC and BE I BA. The angle 6 formed by these lines is congruent to
the angle 1 for the following reason. The angles DEC and EBA are
congruent since both are right. Subtracting from each of them the
same angle EEC we obtain: /1 = /6. Now notice that the sides of
the auxiliary angle 6 are parallel to the intersecting lines which form
the angles 2, 3, 4, 5 (because two perpendiculars to the same line are
parallel, §71). Therefore the latter angles are either congruent to the

E

Figure 85
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angle 6 or supplement it to 2d. Replacing the angle 6 with the aiigle
1 congruent to it, we obtain what was required to prove.

EXERCISES

140. Divide the plane by infinite straight lines into five parts, using
as few lines as possible.
141. In the interior of a given angle, construct an angle congruent
to it.
142. Using a protractor, straightedge, and drafting triangle, measure
an angle whose vertex does not fit the page of the diagram.
143. How many axes of symmetry does a pair of parallel lines have?
How about three parallel lines?
144. Two parallel lines are intersected by a transversal, and one
of the eight angles thus formed is 72°. Find the measures of the
remaining seven angles.
145. One of the interior angles formed by a transversal with one of
two given parallel lines is 4d/5. What angle does its bisector make
with the other of the two parallel lines?
146. The angle a transversal makes with one of two parallel lines is
by 90° greater than with the other. Find the angle.
147. Four out of eight angles formed by a transversal intersecting
two given lines contain 60° each, and the remaining four contain 120°
each. Does this imply that the given lines are parallel?
148. At the endpoints of the base of a triangle, perpendiculars to
the lateral sides are erected. Compute the angle at the vertex of the
triangle if these perpendiculars intersect at the angle of 120°.
149. Through a given point, construct a line making a given angle
to a given line.
150. Prove that if the bisector of one of the exterior angles of a
triangle is parallel to the opposite side, then the triangle is isosceles.
151. In a triangle, through the intersection point of the bisectors of
the angles adjacent to a base, a line parallel to the base is drawn.
Prove that the segment of this line contained between the lateral
sides of the triangle is congruent to the sum of the segments cut out
on these sides and adjacent to the base.
1 52.* Bisect an angle whose vertex does not fit the page of the
diagram.
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12 The angle sum of a polygon

81. Theorem. The sum of angles of a triangle is 2d.
Let ABC (Figure 86) be any triangle; we are required to prove

that the sum of the angles A, B and C is 2d, i.e. 1800.
Extending the side AC past C and drawing CEIIAB we find:

LA = LECD (as corresponding angles formed by a transversal inter-
secting parallel lines) and LB = LBCE (as alternate angles formed
by a transversal intersecting parallel lines). Therefore

LA+LB+LC=LECJJ+LBCE+LC=2d=180°.

Corollaries. (1) Any exterior angle of a triangle is congruent to
the sum of the interior angles not supplementary to it (e.g. LBCD =
LA+LB).

(2) If two angles of one triangle are congruent respectively to two
angles of another, then the remaining angles are congruent as well.

(3) The sum of the two acute angles of a rig/it triangle is congru-
ent to one right angle, i.e. it is 90°.

(4) In an isosceles right triangle, each acute angle is i.e. 45°.

(5) In an equilateral triangle, each angle is i.e. 60°.
(6) If in a right triangle ABC (Figure 87) one of the acute angles

(for instance, LB) is 30°, then the leg opposite to it is congruent to
a half of the hypotenuse. Indeed, noticing that the other acute angle
in such a triangle is 60°, attach to the triangle ABC another triangle
ABD congruent to it. Then we obtain the triangle JJBC, whose
angles are 60° each. Such a triangle has to he equilateral and
hence DC = BC. But AC = and therefore AC =

E

Figure 86 Figure 87
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We leave it to the reader to prove the converse proposition: If
a leg is congruent to a half of the hypotenuse, then the acute angle
opposite to it is 3Q0

82. Theorem. The sum of angles of a convex polygon hav-
ing n sides is congruent to two right angles repeated n — 2

times.
Taking, inside the polygon, an arbitrary point 0 (Figure 88), con-

nect it with all the vertices. The convex polygon is thus partitioned
into as many triangles as it has sides, i.e. n. The sum of angles in
each of them is 2d. Therefore the sum of angles of all the triangles
is 2dn. Obviously, this quantity exceeds the sum of all angles of the
polygon by the sum of all those angles which are situated around the
point 0. But the latter sum is 4d Therefore the sum of angles
of the polygon is

2dn—4d=2d(n—2)=180° x(n—2).

Figure 88 Figure 89

Remarks. (1) The theorem can be also proved this way. From
any vertex A (Figure 89) of the convex polygon, draw its diagonals.
The polygon is thus partitioned into triangles, the number of which
is two less than the number of sides of the polygon. Indeed, if we
exclude from counting those two sides which form the angle A of
the polygon, then the remaining sides correspond to one triangle
each. Therefore the total number of such triangles is n — 2, where
n denotes the number of sides of the polygon. In each triangle, the
sum of angles is 2d, and hence the sum of angles of all the triangles is
2d(n — 2). But the latter sum is the sum of all angles of the polygon.

(2) The same result holds true for any non-convex polygon. To
prove this, one should first partition it into convex ones. For this,
it suffices to extend all sides of the polygon in both directions. The
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infinite straight lines thus obtained will divide the plane into convex
parts: convex polygons and some infinite regions. The original non-
convex polygon will consist of some of these convex parts.

83. Theorem. If at each vertex of a convex polygon, we
extend one of the sides of this angle, then the sum of the

exterior angles thus formed is congruent to 4d (regardless of
the number of sides of the polygon).

Each of such exterior angles (Figure 90) supplements to 2d one
of the interior angles of the polygon. Therefore if to the sum of all
interior angles we add the sum of these exterior angles, the result
will be 2dm (where it is the number of sides of the polygon). But the
sum of the interior angles, as we have seen, is 2dm — 4d. Therefore
the sum of the exterior angles is the difference:

2dm-(2db—4d)=2dm—2dm+4d4d360°.

Figure 90

EXERGISES

153. Compute the angle between two medians of an equilateral tri-
angle.
154. Compute the angle between bisectors of acute angles in a right
triangle.
155. Given an angle of an isosceles triangle, compute the other two.
Consider two cases: the given angle is (a) at the vertex, or (b) at the
base.
156. Compute interior and exterior angles of an equiangular pen-
tagon.
157* Compute angles of a triangle which is divided by one of its
bisectors into two isosceles triangles. Find all solutions.
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158. Prove that if two angles and the side opposite to the first of
them in one triangle are congruent respectively to two angles and
the side opposite to the first of them in another triangle, then such
triangles are congruent.
Remark: This proposition is called sometimes the AAS-test, or
SAA-test.
159. Prove that if a leg and the acute angle opposite to it in one
right triangle are congruent respectively to a leg and the acute an-
gle opposite to it in another right triangle, then such triangles are
congruent.
160. Prove that in a convex polygon, one of the angles between the
bisectçrs of two consecutive angles is congruent to the sernisurn of
these two angles.
161. Given two angles of a triangle, construct the third one.
162. Given an acute angle of a right triangle, construct the other
acute angle.
168. Construct a right triangle, given one of its legs and the acute
angle opposite to it.
164. Construct a triangle, given two of its angles and a side opposite
to one of them.
165. Construct an isosceles triangle, given its base and the angle at
the vertex.
166. Construct an isosceles triangle: (a) given the angle at the base,
and the altitude dropped to one of the lateral sides; (b) given the
lateral side and the altitude dropped to it.
167. Construct an equilateral triangle, given its altitude.
168. thisect a right angle (in other words, construct the angle of

x 90° = 30°).
169. Construct a polygon congruent to a given one.
Hint: Diagonals partition a convex polygon into triangles.
170. Construct a quadrilateral, given three of its angles and the sides
containing the fourth angle.
Hint: Find the fourth angle.
171 How many acute angles can a convex polygon have?
I 72.* Find the sum of the "interior" angles at the five vertices of a
five-point star (e.g. the one shown in Figure 221), and the sum of
its five exterior angles (formed by extending one of the sides at each
vertex). Compare the results with those of §82 and §83.
1 Following Remark (2) in §82, extend the results of §82 and
§83 to non-convex polygons.
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13 Parallelograms and trapezoids

84. The parallelogram. A quadrilateral whose opposite sides
are pairwise parallel is called a parallelogram. Such a quadrilateral
(ABCD, Figure 91) is obtained, for instance, by intersecting any two
parallel lines KL and MN with two other parallel lines RS and PQ.

85. Properties of sides and angles.
Theorem. In any parallelogram, opposite sides are congru-

ent, opposite angles are congruent, and the sum of angles
adjacent to one side is 2d (Figure 92).

Drawing the diagonal RD we obtain two triangles: ABD and
BCD, which are congruent by the ASA-test because BD is their
common side, Li = L4, and L2 = L3 (as alternate angles formed
by a transversal intersecting parallel lines). It follows from the con-
gruence of the triangles that AB = CD, AD BC, and LA = LC.
The opposite angles B and D are also congruent since they are sums
of congruent angles.

Finally, the angles adjacent to one side, e.g. the angles A and
D, add up to 2d since they are same-side interior angles formed by
a transversal intersecting parallel lines.

Corollary. If one of the angles of a parallelogram is right, then
the other three are also right.

Remark. The congruence of the opposite sides of a parallelogram
can be rephrased this way: parallel segments cut out by parallel lines
are congruent.

R/V/5
/217

rigure 91 Figure 92 Figure 93

Corollary. If two lines are parallel, then all points of each of
them are the same distance away from the other line; in short parallel
lines (AB and CD, Figure 93) are everywhere the same distance
apart.

Indeed, if from any two points M and N of the line CD, the
perpendiculars MP and NQ to AB are dropped, then these perpen-

C CM N D
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diculars are parallel and therefore the quadrilateral MNQP is
a parallelogram. It follows that MN = NQ, i.e. the points Al and
N are are the same distance away from the line AB.

Remark. Given a parallelogram (ABCD, Figure 91), one some-
times refers to a pair of its parallel sides (e.g. AD and BC) as a pair
of bases. In this case, a line segment (UV) connecting the parallel
lines PQ and RB and perpendicular to them is called an altitude
of the parallelogram. Thus, the corollary can be rephrased this way:
all altitudes between the same bases of a parallelogram are congruent
to each other.

86. Two tests for parallelograms.
Theorem. If in a convex quadrilateral:
(1) opposite sides are congruent to each other, or
(2) two opposite sides are congruent and parallel,

then this quadrilateral is a parallelogram.
(1) Let ABCD (Figure 92) be a quadrilateral such that

AB=CD and BC=AD.

It is recjuired to prove that this quadrilateral is a parallelogram, i.e.
that ABIICD and BCIIAD.

Drawing the diagonal BD we obtain two triangles, which are
congruent by the SSS-test since BD is their common side, and AB =
CD and BC = AD by hypothesis. It follows from the congruence
of the triangles that Li = /4 and /2 = /3 (in congruent triangles,
congruent sides oppose congruent angles). This implies that ABIICD
and BCIIAD (if alternate angles are congruent, then the lines are
parallel).

(2) Let ABCD (Figure 92) be a quadrilateral such that BCIIAD
and BC = AD. It is required to prove that ABCD is a parallelo-
gram, i.e. that ABIICD.

The triangles ABD and BCD are congruent by the SAS-test
because BD is their common side, BC AD (by hypothesis), and
/2 = /3 (as alternate angles formed by intersecting parallel lines by
a transversal). The congruence of the triangles implies that Li = /4,
and therefore ABIICD.

87. The diagonals and their property.
Theorem. (1) If a quadrilateral (ABCD, Figure 94) is a par-

allelogram, then its diagonals bisect each other.
(2) Vice versa, in a quadrilateral, if the diagonals bisect

each other, then this quadrilateral is a parallelogram.
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(1) The triangles BOG and AOD are congruent by the ASA-test,
because BC = AD (as opposite sides of a parallelogram), /1 = /2
and /3 = /4 (as alternate angles). It follows from the congruence
of the triangles that OA = OC and OD = OS.

C

A

(2) If AO = OC and SO = OD, then the triangles AOD and
SOC are congruent (by the SAS-test). It follows from the congru-
ence of the triangles that /1 = /2 and /3 = /4. Therefore BCIIAD
(alternate angles are congruent) and BC = AD. Thus ABCD is a
parallelogram (by the second test).

88. Central symmetry. Two points A and A' (Figure 95) are
called symmetric about a point 0, if 0 is the midpoint of the line
segment AA'.

Thus, in order to construct the point symmetric to a given point
A about another given point 0, one should connect the points A
and 0 by a line, extend this line past the point 0, and mark on the
extension the segment OA' congruent to OA. Then A' is the required
point.

Two figures (or two parts of the same figure) are called symmetric
about a given point 0, if for each point of one figure, the point
symmetric to it about the point 0 belongs to the other figure, and
vice versa. The point 0 is then called the center of symmetry. The
symmetry itself is called central (as opposed to the axial symmetry
we encountered in §37). If each point of a figure is symmetric to some
point of the same figure (about a certain center), then the figure is
said to have a center of symmetry. An example of such a figure is a
circle; its center of symmetry is the center of the circle.

Every figure can be superimposed on the figure symmet-
ric to it by rotating the figure through the angle 180° about
the center of symmetry. Indeed, any two symmetric points (say,
A and Figure 95) exchange their positions under this rotation.

Remarks. (1) Two figures symmetric about a point can be super-

Figure 94
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imposed therefore by a motion within the plane, i.e. without lifting
them off the plane. In this regard central symmetry differs from axial
symmetry where for superimposing the figures it was necessary
to flip one of them over.

(2) Just like axial symmetry, central symmetry is frequently found
around us (see Figure 96, which indicates that each of the letters N
and S has a center of symmetry while E and W do not).

NS
W E3M
SN

Figure 96

89. In a parallelogram, the intersection point of the di-

agonals is the center of symmetry (Figure 94).
Indeed, the vertices A and C are symmetric about the intersection

point 0 of the diagonals (since AG = GD), and so are B and C.
Furthermore, for a point P on the boundary of the parallelogram,
draw the line P0, and let Q be the point where the extension of
line past 0 meets the boundary. The triangles AQO and CPG are
congruent by the ASA-test for L4 = /3 (as alternate), ZQGA =
/PGC (as vertical), and AG = OC. Therefore QO = OF, i.e. the
points P and Q are symmetric about the center 0.

Remark. If a parallelogram is turned around 180° about the
intersection point of the diagonals, then each vertex exchanges its
position with the opposite one (A with C, and B with D in Figure
94), and the new position of the parallelogram will coincide with the
old one.

Most parallelograms do not possess axial symmetry. In the next
section we will find out which of them do.

90. The rectangle and its properties. If one of the angles of
a parallelogram is right then the other three are also right A
parallelogram all of whose angles are right is called a rectangle.

Since rectangles are parallelograms, they possess all properties of

B.

0 A' n
Figure 95
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parallelograms (for instance, their diagonals bisect each other, and
the intersection point of the diagonals is the center of symmetry).
However rectangles have their own special properties.

B C

A

(1) In a rectangle (ABCD, Figure 97), the diagonals are
congruent.

The right triangles ACD and AED are congruent because they
have respectively congruent legs (AD is a common leg, and AR
CD as opposite sides of a parallelogram). The congruence of the
triangles implies: AC = ED.

(2) A rectangle has two axes of symmetry. Namely, each
line passing through the center of symmetry and parallel to two op-
posite sides of the rectangle is its axis of symmetry. The axes of
symmetry of a rectangle are perpendicular to each other (Figure 98).

91. The rhombus and its properties. A parallelogram all
of whose sides are congruent is called a rhombus. Beside all the
properties that parallelograms have, rhombi also have the following
special ones.

% 4'F

A '—1

Figure 99 Figure 100

(1) Diagonals of a rhombus (ABCD, Figure 99) are perpen-
dicular and bisect the angles of the rhombus.

The triangles AQE and COB are congruent by the SSS-test be-
cause 130 is their common side, AS = BC (since all sides of a
rhombus are congruent), and AO = OC (since the diagonals of any

-F

Figure 97 Figure 98

C

0
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parallelogram bisect each other). The congruence of the triangles
implies that

Z1=L2, i.e. .BD±AC, and L3=L4,

i.e. the angle B is bisected by the diagonal SD. F±orn the congruence
of the triangles SOC and DOC, we conclude that the angle C is
bisected by the diagonal CA, etc.

(2) Each diagonal of a rhombus is its axis of symmetry.
The diagonal SD (Figure 99) is an axis of symmetry of the rhoin-

bus ABCD because by rotating about BD we can superixn-
pose it onto L?IBCD. Indeed, the diagonal SD bisects the angles B
and D, and beside this 45 = BC and AD = DC.

The same reasoning applies to the diagonal AC.
92. The square and its properties. A square can be defined

as a parallelogram all of whose sides are congruent and all of whose
angles are right. One can also say that a square is a rectangle all
of whose sides are congruent, or a rhombus all of whose angles are
right. Therefore a square possesses all the properties of parallelo-
grams, rectangles and rhombi. For instance, a square has four axes
of symmetry (Figure 100): two passing through the midpoints of op-
posite sides (as in a rectangle), and two passing through the vertices
of the opposite angles (as in a rhombus).

A theorem based on properties of parallelograms.
Theorem. If on one side of an angle (e.g. on the side BC

of the angle ABC, Figure 101), we mark segments congruent to
each other (DE = EF = ...), and through their endpoints,
we draw parallel lines (Dlvi, EN, FP, ...) until their in-
tersections with the other side of the angle, then the seg-
ments cut out on this side will be congraent to each other
(MN=NP=...).
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Draw the auxiliary lines DK and DL parallel to AB. The trian-
gles DKE and ELF are congruent by the ASA-test since DE = EF
(by hypothesis), and LKDE = ZLEF and LKED = ZLFE (as cor-
responding angles formed by a transversal intersecting parallel lines).
From the congruence of the triangles, it follows that DIC = EL. But
DK = MN and EL = NP (as opposite sides of parallelograms),
and therefore MN = NP.

Remark. The congruent segments can be also marked starting
from the vertex of the angle B, i.e. like this: BD = DE = EF =.
Then the congruent segments on the other side of the angle are also
formed starting from the vertex, i.e. BM = MN = NP =

94. Corollary. The line (DE, Figure 102) passing through the
midpoint of one side (AB) of a triangle and parallel to another side
bisects the third side (BC).

Indeed, on' the side of the angle B, two congruent segments BD =
DA are marked and through the division points D and A, two parallel
lines DE and AC are drawn until their intersections with the side
BC. Therefore, by the theorem, the segments cut out on this side
are also congruent, i.e. BE a EC, and thus the point E bisects BC.

Remark. The segment connecting the midpoints of two sides of
a triangle is called a midline of this triangle.

Figure 102

95. The midline theorem.
Theorem. The line segment (DE, Figure 102) connecting the

midpoints of two sides of a triangle is parallel to the third
side, and is congruent to a half of it.

To prove this, imagine that through the midpoint D of the side
AB, we draw a line parallel to the side AC. Then by the result of
§94, this line bisects the side BC and thus coincides with the line
DE connecting the midpoints of the sides AB and BC.

Furthermore, drawing the line EFIIAD, we find that the side

8

E

A F C
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AC is bisected at the point F. Therefore AF = FC and beside this
AF = DE (as opposite sides of the parallelogram ADEF). This
implies: DE =

A quadrilateral which has two opposite
sides parallel and the other two opposite sides non-parallel is called
a trapezoid. The parallel sides (AD and BC, Figure 103) of a trape-
zoid are called its bases, and the non-parallel sides (AB and CD)
its lateral sides. If the lateral sides are congruent, the trapezoid is
called isosceles.

B C B C

97. The midline of a trapezoid. The line segment connecting
the midpoints of the lateral sides of a trapezoid is called its midline.

Theorem. The midline (EF, Figure 104) of a trapezoid is
parallel to the bases and is congruent to their semisum.

Through the points B and F, draw a line until its intersection
with the extension of the side AD at some point C. We obtain
two triangles: BCF and CDF, which are congruent by the ASA-
test since CF = FD (by hypothesis), ZBFC = ZCFD (as vertical
angles), and LBCF = ZCDF (as alternate interior angles formed by
a transversal intersecting parallel lines). From the congruence of the
triangles, it follows that BF = FC and BC = DC. We see now that
in the triangle ABC, the line segment EF connects the midpoints of
two sides. Therefore we have: EFIEAG and EF =
or in other words, EFIIAD and EF = + BC).

EXERGISES

174. Is a parallelogram considered a trapezoid?
175. How many centers of symmetry can a polygon have?
176. Can a polygon have two parallel axes of symmetry?
177. How many axes of symmetry can a quadrilateral have?

Figure 103 Figure 104
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Prove theorems:

178. Midpoints of the sides of a quadrilateral are the vertices of a
parallelogram. Determine under what conditions this parallelogram
will be (a) a rectangle, (b) a rhombus, (c) a square.
179. In a right triangle, the median to the hypotenuse is congruent
to ahalf of it.
Hint: Double the median by extending it past the hypotenuse.
180. Conversely, if a median is congruent to a half of the side it
bisects, then the triangle is right.
181. In a right triangle, the median and the altitude drawn to the
hypotenuse make an angle congruent to the difference of the acute
angles of the triangle.
182. In AABC, the bisector of the angle A meets the side BC at
the point D; the line drawn from D and parallel to CA meets AR
at the point E; the line drawn from E and parallel to BC meets AC
at F. Prove that EA = FC.
188. Inside a given angle, another angle is constructed such that
its sides are parallel to thessides of the given one and are the same
distance away from them. Prove that the bisector of the constructed
angle lies on the bisector of the given angle.
184. The line segment connecting any point on one base of a trape-
zoid with any point on the other base is bisected by the midline of
the trapezoid.
185. The segment between midpoints of the diagonals of a trapezoid
is congruent to the semidifference of the bases.
186. Through the vertices of a triangle, the lines parallel to the
opposite sides are drawn. Prove that the triangle formed by these
lines consists of four triangles congruent to the given one, and that
each of its sides is twice the corresponding side of the given triangle.
187. In an isosceles triangle, the sum of the distances from each point
of the base to the lateral sides is constant, namely it is congruent to
the altitude dropped to a lateral side.
188. How does this theorem change if points on the extension of the
base are taken instead?
189. In an equilateral triangle, the sum of the distances from an
interior point to the sides of this triangle does not depend on the
point, and is congruent to the altitude of the triangle.
190. A parallelogram whose diagonals are congruent is a rectangle.
191. A parallelogram whose diagonals are perpendicular to each
other is a rhombus.
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192. Any parallelogram whose angle is bisected by the diagonal is a
rhombus.
193. From the intersection point of the diagonals of a rhombus,
perpendiculars are dropped to the sides of the rhombus. Prove that
the feet of these perpendiculars are vertices of a rectangle.
194. Bisectors of the angles of a rectangle cut out a square.
195. Let B', and D' be the midpoints of the sides CD, DA,
AB, and BC of a square. Prove that the segments ÁÄç CCç DD',
and RB' cut out a square, whose sides are congruent to 2/5th of any
of the segments.
196. Given a square ABCD. On its sides, congruent segments AAç
BBç CC', and DD' are marked. The points A', B', and D' are
connected consecutively by lines. Prove that A'B'C'D' is a square.

Find the geometric locus of:
197. The midpoints of all segments drawn from a given point to
various points of a given line.
198. The points equidistant from two given parallel lines.
199. The vertices of triangles having a common base and congruent
altitudes.

Construction problems
200. Draw a line parallel to a given one and situated at a given
distance from it.
201. Through a given point, draw a line such that its line segment,
contained between two given lines, is bisected by the given point.
202. Through a given point, draw a line such that its line segment,
contained between two given parallel lines, is congruent to a given
segment.
203. Between the sides of a given angle, place a segment congruent
to a given segment and perpendicular to one of the sides of the angle.
204. Between the sides of a given angle, place a segment congruent
to a given segment and parallel to a given line intersecting the sides
of the angle.
205. Between the sides of a given angle, place a segment congruent
to a given segment and such that it cuts congruent segments on the
sides of the angle.
206. In a triangle, draw a line parallel to its base and such that the
line segment contained between the lateral sides is congruent to the
sum of the segments cut out on the lateral sides and adjacent to the
base.
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14 Methods of construction and symmetries

98. Problem. To divide a given line segment (AR, Figure 105)
into a given number of congruent parts (e.g. into 3).

From the endpoint A, draw a line AC that forms with AD some
angle. Mark on AC, starting from the point A, three congruent
segments of arbitrary length: AD = DE = EF. Connect the point
F with B, and draw through F and D lines EN and DM parallel
to FE. Then, by the results of §93, the segment AB is divided by
the points Al and N into three congruent parts.

99. The method of parallel translation. A special method
of solving construction problems, known as the method of parallel
translation, is based on properties of parallelograms. It can be best
explained with an example.

Problem. Two towns A and B (Figure 106) are situated on op-
posite sides of a canal whose banks CD and EF are parallel straight
lines. At which point should one build a bridge AIIM' across the canal
in order to make the path AM + MM' + A'J'B between the towns the
shortest possible?

To facilitate the solution, imagine that all points of the side of
the canal where the town A is situated are moved downward ("trans-
lated") the same distance along the lines perpendicular to the banks
of the canal as far as to make the bank CD merge with the bank
EF. In particular, the point A is translated to the new position
A' on the perpendicular AA' to the banks, and the segment AA' is
congruent to the bridge AIM'. Therefore AA'M'M is a parallelo-
gram (2)), and hence AM = A'M'. We conclude that the sum
AM + MM' + M'B is congruent to AA' + A'AI' + M'B. The latter
sum will he the shortest when the broken line A'M'B is straight.

C
F

E

A M N

Figure 105 Figure 106
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Thus the bridge should be built at that point X on bank EF where
the bank intersects with the straight line A'B.

100. The method of reflection. Properties of axial symmetry
can also be used in solving construction problems. Sometimes the
required construction procedure is easily discovered when one folds a
part of the diagram along a certain line (or, equivalently, reflects it
in this line as in a mirror) so that this part occUpies the symmetric
position on the other side of the line. Let us give an example.

Problem. Two towns A and B (Figure 107) are situated on the
same side of a railroad CD which has the shape of a straight line.
At which point on the railroad should one build a station frI in order
to make the sum AM + MB of the distances from the towns to the
station the smallest possible?

Reflect the point A to the new position A' symmetric about the
line CD. The segment A'M is symmetric to AM about the line CD,
and therefore A'M = AM. We conclude that the sum AM + MB is
congruent to A'M + MB. The latter sum will be the smallest when
the broken line A'MB is straight. Thus the station should be built
at the point X where the railroad line CD intersects the straight line
A'S.

The same construction solves yet another problem: given the line
CD, and the points A and B, find a point fri such that ZAMC =
ZBMD.

B

Figure 107 Figure 108

101. Translation. Suppose that a figure (say, a triangle ABC,

Figure 108) is moved to a new position (A'B'C') in a way such that
all segments between the points of the figure remain parallel to them-
selves (i.e. A'B'IIAB, B'C'IIBC, etc.). Then the new figure is called
a translation of the original one, and the whole motion, too, is
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called translation. Thus the sliding motion of a drafting triangle
(Figure 76) along a straightedge (in the construction of parallel lines
described in §74) is an example of translation.

Note that by the results of §86, if ABIPA'B' and AB = A'B' (Fig-
ure 108), then ABB'A' is a parallelogram, and therefore

AA' = BB'. Thus, if under translation of a figure, the new posi-
tion A' of one point A is known, then in order to translate all other
points B, C, etc., it suffices to construct the parallelograms AA'B'B,
AA'C'C, etc. In other words, it suffices to construct line segments
BBç etc. parallel to the line segment directed the same
way as AAç and congruent to it.

Vice versa, if we move a figure (e.g. to a new position
by constructing the line segments CCç etc.

which are congruent and parallel to each other, and are also directed
the same way, then the new figure is a translation of the old one.
Indeed, the quadrilaterals AA'B'B, AA'C'C, etc. are parallelograms,
and therefore all the segments AB, BC, etc. are moved to their new
positions B'Cç etc. remaining parallel to themselves.

Let us give one more example of a construction problem solved
by the method of translation.

102. Problem. To construct a quadrilateral ABCD (Figure
109), given segments congruent to its sides and to the line EF con-
necting the mzdpoints of two opposite sides.

Figure 109

To bring the given lines close to each other, translate the sides

AD and BC, i.e. move them in a way such that they remain parallel
to themselves, to the new positions ED' and Then DAED' and
C'EBC are parallelograms, and hence the segment DD' is congruent

B

C,
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and parallel to AE, and the segment CC' congruent and parallel to
BE. But AE = EB, and therefore DD' = CC' and DD'lICC'. As
a consequence, the triangles DD'F and CC'F are congruent by the
SAS-test (since DD' CC', DF = FC, and ZD'DF = ZC'CF).
The congruence of the triangles implies that ZD'FD = ZC'FC,
hence the broken line D'FC' turns out to be straight, and therefore
the figure ED'FC' is a triangle. In this triangle, two sides are known
(ED' = AD and EC' = BC), and the median EF to the third side
is known too. The triangle EC'D' is easily recovered from these
data. (Namely, double EF by extending it past F and connect the
obtained endpoint with D' and C'. In the resulting parallelogram,
all sides and one of the diagonals are known.)

Having recovered AED'Cç construct the triangles D'DF and
C'CF, and then the entire quadrilateral ABCD.

EXERCISES

207. Construct a triangle, given:
(a) its base, the altitude, and a lateral side;
(b) its base, the altitude, and an angle at the base;
(c) an angle, and two altitudes dropped to the sides of this angle;
(d) a side, the sum of the other two sides, and the altitude dropped
to one of these sides;
(e) an angle at the base, the altitude, and the perimeter.
208. Construct a quadrilateral, given three of its sides and both
diagonals.
209. Construct a parallelogram, given:
(a) two non-congruent sides and a diagonal;
(b) one side and both diagonals;
(c) the diagonals and the angle between them;
(d) a side, the altitude, and a diagonal. (Is this always possible?)
210. Construct a rectangle, given a diagonal and the angle between
the diagonals.
211. Construct a rhombus, given:
(a) its side and a diagonal;
(b) both diagonals;
(c) the distance between two parallel sides, and a diagonal;
(d) an angle, and the diagonal passing through its vertex;
(e) a diagonal, and an angle opposite to it;
(f) a diagonal, and the angle it forms with one of the sides.
212. Construct a square, given its diagonal.
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213. Construct a trapezoid, given:
(a) its base, an angle adjacent to it, and both lateral sides (there can
be two solutions, one, or none);
(b) the difference between the bases, a diagonal, and lateral sides;
(c) the four sides (is this always possible?);
(d) a base, its distance from the other base, and both diagonals (when
is this possible?);
(e) both bases and both diagonals (when is this possible?).
214.* Construct a square, given:
(a) the sum of a diagonal and a side;
(b) the difference of a diagonal and an altitude.
215.* Construct a parallelogram, given its diagonals and an altitude.
21 6.* Construct a parallelogram, given its side, the sum of the di-
agonals, and the angle between them.
21 7•* Construct a triangle, given:
(a) two of its sides and the median bisecting the third one;
(b) its base, the altitude, and the median bisecting a lateral side.
21 8.* Construct a right triangle, given:
(a) its hypotenuse and the sum of the legs;
(b) the hypotenuse and the difference of the legs. Perform the re-
search stage of the solutions.
219. Given an angle and a point inside it, construct a triangle with
the shortest perimeter such that one of its vertices is the given point
and the other two vertices lie on the sides of the angle.
Hint: use the method of reflection.
220.* Construct a quadrilateral ABCD whose sides are given as-
suming that the diagonal AC bisects the angle A.
221 Given positions A and B of two billiard balls in a rectangular
billiard table, in what direction should one shoot the ball A so that
it reflects consecutively in the four sides of the billiard and then hits
the ball B?
222. Construct a trapezoid, given all of its sides.
Hint: use the method of translation.
223.* Construct a trapezoid, given one of its angles, both diagonals,
and the midline.
224.* Construct a quadrilateral, given three of its sides and both
angles adjacent to the unknown side.
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THE CIRCLE

1 Circles and chords

103. Preliminary remarks. Obviously, through a point (A,
Figure 110), it is possible to draw as many circles as one wishes:
their centers can be chosen arbitrarily. Through two points (A and
B, Figure 111), it is also possible to draw unlimited number of circles,
but their centers cannot be arbitrary since the points equidistant
from two points A and B must lie on the perpendicular bisector
of the segment AB (i.e. on the perpendicular to the segment AB
passing through its midpoint, §56).

Let us find out if it is possible to draw a circle through three
points.

Figure 110 Figure 111

104. Theorem. Through any three points, not lying on the
same line, it is possible to draw a circle, and such a circle
is unique.

83
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Through three points A, B, C (Figure 112), not lying on the
same line, (in other words, through the vertices of a triangle ABC),
it is possible to draw a circle only if there exists a fourth point 0,
which is equidistant from the points A, B, and C. Let us prove that
such a point exists and is unique. For this, we take into account
that any point equidistant from the points A and B must lie on the
perpendicular bisector MN of the side AB Similarly, any point
equidistant from the points B and C must lie on the perpendicular
bisector PQ of the side BC. Therefore, if a point equidistant from
the three points A, B, and C exists, it must lie on both IV! N and PQ,
which is possible only when it coincides with the intersection point
of these two lines. The lines MN and PQ do intersect (since they
are perpendicular to the intersecting lines AB and BC, §78). The
intersection point 0 will be equidistant from A, B, and C. Thus, if
we take this point for the center, and take the segment GA (or GB,
or OC) for the radius, then the circle will pass through the points
A, B, and C. Since the lines MN and PQ can intersect only at one
point, the center of such a circle is unique. The length of the radius
is also unambiguous, and tljerefore the circle in question is unique.

A

Figure 112

Remarks. (1) If the points A, B, and C (Figure 112) lay on
the same line, then the perpendiculars MN and PQ would have
been parallel, and therefore could not intersect. Thus, through three
points lying on the same line, it is not possible to draw a circle.
- (2) Three or more points lying on the same line are often called
collinear.

p
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Corollary. The point 0, being the same distance away from A
and C, has to also lie on the perpendicular bisector RS of the side
AC. Thus: three perpendicular bisectors of the sides of a triangle
intersect at one point.

105. Theorem. The diameter (AD, Figure 113), perpendic-
ular to a chord, bisects the chord and each of the two arcs
subtended by it.

Fold the diagram along the diameter AD so that the left part of
the diagram falls onto the right one. Then the left semicircle will be
identified with the right semicircle, and the perpendicular ICC will
merge with KD. It follows that the point C, which is the intersection
of the semicircle and KC, will merge with D. Therefore KC = KD,

BC=BD, AC=AD.

A F

Figure 113 Figure 114

106. Converse theorems. (1) The diameter (AD), bisecting
a chord (CD), is perpendicular to this chord and bisects the
arc subtended by it (Figure 113).

(2) The diameter (AB), bisecting an arc (CBD), is perpen-
dicular to the chord subtending the arc, and bisects it.

Both propositions are easily proved by reductio ad absurdurn.
107. Theorem. The arcs (AC and BD, Figure 114) contained

between parallel chords (AB and CD) are congruent.
Fold the diagram along the diameter EF I AB. Then we can

conclude on the basis of the previous theorem that the point A merges
with B, and the point C with D. Therefore the arc AC is identified
with the arc BD, i.e. these arcs are congruent.

108. Problems. (1) To bisect a given arc (AD, Figure 115).
Connecting the ends of the arc by the chord AB, drop the per-

pendicular to this chord from the center and extend it up to the
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intersection point with the arc. By the result of §106, the arc AR is
bisected by this perpendicular.

However, if the center is unknown, then one should erect the
perpendicular to the chord at its midpoint.

p

Figure 115

(2) To find the center of a given circle (Figure 116).
Pick on the circle any three points A, B, and C, and draw two

chords through them, for instance, AR and BC. Erect perpendicu-
lars MN and PQ to these chords at their midpoints. The required
center, being equidistant from A, B, and C, has to lie on MN and
PQ. Therefore it is located at the intersection point 0 of these
perpendiculars.

109. Relationships between arcs and chords.
Theorems. In a disk, or in congruent disks:

(1) if two arcs are congruent, then the chords subtending
them are congruent and equidistant from the center;

(2) if two arcs, which are smaller than the semicircle, are
not congruent, then the greater of them is subtended by the
greater chord, and the greater of the two chords is closer to
the center.

(1) Let an arc AR (Figure 117) be congruent to the arc CD; it
is required to prove that the chords AR and CD are congrnent, and
that the perpendiculars GE and OF to the chords dropped from the

center are congruent too.

Rotate the sector AOB about the center 0 so that the radius OA

coincides with the radius OC. Then the arc AR will go along the arc

CD, and since the arcs are congruent they will coincide. Therefore
the chord AB will coincide with the chord CD, and the perpendicular

VE will merge with OF (since the perpendicular from a given point
to a given line is unique), i.e. AB = CD and GE = OF.

Figure 116
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(2) Let the arc AD (Figure 118) be smaller than the arc CD,
and let both arcs be smaller than the semicircle; it is required to
prove that the chord AD is smaller than the chord CD, and that the
perpendicular OE is greater than the perpendicular OF.

D

B

Figure 117 Figure 118

Mark on the arc CD the arc CK congruent to the arc AD and
draw the auxiliary chord CK, which by the result of part (1) is con-
gruent to and is the same distance away from the center as the chord
AD. The triangles COD and COK have two pairs of respectively
congruent sides (since they are radii), and the angles contained be-
tween these sides are not congruent. In this case the greater
angle (i.e. ZCOD) is opposed by the greater side. Thus CD> CIC,
and therefore CD > AD.

In order to prove that OE > OF, draw OL ± CIC and take into
account that OE = OL by the result of part (1), and therefore it
suffices to compare OF with OL. In the right triangle OFM (shaded
in Figure 118), the hypotenuse OM is greater than the leg OF. But
OL> OM, and hence OL> OF, i.e. OE > OF.

The theorem just proved for one disk remains true for congnt-
ent disks because such disks differ from one another only by their
position.

110. Converse theorems. Since the previous theorems address
all possible mutually exclusive cases of comparative size of two arcs
of the same radius (assuming that the arcs are smaller than the
semicircle), and the obtained conclusions about comparative size of
subtending chords or their distances from the center are mutually
exclusive too, the converse propositions have to hold true as well.
Namely:

In a disk, or in congruent disks:
(1) congruent chords are equidistant from the center and

subtend congruent arcs;

A
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(2) chords equidistant from the center are congruent and
subtend congruent arcs;

(3) the greater one of two non-congruent chords is closer
to the center and subtends the greater arc;

(4) among two chords non-equidistant to the center, the
one which is closer to the center subtends the greater arc.

These propositions are easy to prove by rednctio ad absurdum.
For instance, to prove the first of them we may argue this way. If
the given chords subtended non-congruent arcs, then due to the first
direct theorem the chords would have been non-congruent, which
contradicts the hypothesis. Therefore congruent chords must sub-
tend congruent arcs. But when the arcs are congruent, then by the
direct theorem, the subtending chords are equidistant from the cen-
ter.

111. Theorem. A diameter is the greatest of all chords.
Connecting the center 0 with the ends of any chord AB not

passing through the center (Figure 119), we obtain a triangle AOB
such that the chord AB is ,one of its sides, and the other two sides
are radii. By the triangle inequality we conclude that the chord
AB is smaller than the sum of two radii, while a diameter is the sum
of two radii. Thus a diameter is greater than any chord not passing
through the center. But since a diameter is also a chord, one can say
that diameters are the greatest of all chords.

A

D

Figure 120

EXERCISES

225. A given segment is moving, remaining parallel to itself, in such
a way that one of its endpoints lies on a given circle. Find the
geometric locus described by the other endpoint.

- 226. A given segment is moving in such a way that its endpoints slide
along the sides of a right angle. Find the geometric locus described

Figure 119
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by the midpoint of this segment.
227. On a chord AR, two points are taken the same distance away
from the midpoint C of this chord, and through these points, two
perpendiculars to AR are drawn up to their intersections with the
circle. Prove that these perpendiculars are congruent.
Hint: Fold the diagram along the diameter passing through C.
228. Two intersecting congruent chords of the same circle are divided
by their intersection point into respectively congruent segments.
229. Tn a disk, two chords CC' and DD' perpendicular to a diameter
AR are drawn. Prove that the segment MM' joining the midpoints
of the chords CD and C'D' is perpendicular to AR.
230. Prove that the shortest of all chords, passing through a point A
taken in the interior of a given circle, is the one which is perpendicular
to the diameter drawn through A.
231 Prove that the closest and the farthest points of a given circle
from a given point lie on the secant passing through this point and
the center.
Hint: Apply the triangle inequality.
232. Divide a given arc into 4,8, 16,... congruent parts.
233. Construct two arcs of the same radius, given their sum and
difference.
234. Bisect a given circle by another circle centered at a given point.
235. Through a point inside a disk, draw a chord which is bisected
by this point.
236. Given a chord in a disk, draw another chord which is bisected
by the first one and makes a given angle with it. (Find out for which
angles this is possible.)
237. Construct a circle, centered at a given point, which cuts off a
chord of a given length from a given line.
238. Construct a circle of a given radius, with the center lying on
one side of a given angle, and such that on the other side of the angle
it cuts out a chord of a given length.

2 Relative positions of a line and a circle

112. A line and a circle can obviously be found only in one of
the following mutual positions:

(1) The distance from the center to the line is greater than the
radius of the circle (Figure 120), i.e. the perpendicular OC dropped
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to the line from the center 0 is greater than the radius. Then the
point C of the line is farther away from the center than the points of
the circle and lies therefore outside the disk. Since all other points
of the line are even farther away from 0 than the point C (slants
are grater than the perpendicular), then they all lie outside the disk,
and hence the line has no common points with the circle.

(2) The distance from the center to the line is smaller than the
radius (Figure 121). In this case the point C lies inside the disk, and
therefore the line and the circle intersect.

(3) The distance from the center to the line equals the radius
(Figure 122), i.e. the point C is on the circle. Then any other point
D of the line, being farther away from 0 than C, lies outside the disk.
In this case the line and the circle have therefore only one common
point, namely the one which is the foot of the perpendicular dropped
from the center to the line.

Such a line, which has only one common point with the circle, is
called a tangent to the circle, and the common point is called the
tangency point.

113. We see therefore that out of three possible cases of dispo-
sition of a line and a circle, tangency takes place only in the third
case, i.e. when the perpendicular to the line dropped from the center
is a radius, and in this case the tangency point is the endpoint of the
radius lying on the circle. This can be also expressed in the following
way:

(1) if a line (AR) is perpendicular to the radius (OC) at
its endpoint (C) lying on the circle, then the line is tangent
to the circle, and vice versa:

(2) if a line is tangent to a circle, then the radius drawn
to the tangency point is perpendicular to the line.

114. Problem. To construct a tangent to a given circle such that
it is parallel to a given line AD (Figure 123).

Figure 121 Figure 122
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Drop to AR the perpendicular OC from the center, and through
the point D, where the perpendicular intersects the circle, draw
EF]IAB. The required tangent is EF. Indeed, since OC ± AR
and EF[1AB, we have EF I OD, and a line perpendicular to a
radius at its endpoint lying on the circle, is a tangent.

A
E

C

B

Figure 124

115. Theorem. If a tangent is parallel to a chord, then

the tangency point bisects the arc subtended by the chord.
Let a line AR be tangent to a circle at a point (Figure 124)

and he parallel to a chord CD; it is required to prove that CM=MD.
The diameter ME passing through the tangency point Al is per-

pendicular to AB and therefore perpendicular to CD. Thus the

diameter bisects the arc CMD i.e. CM=MD.

EXERCISES -

239. Find the geometric locus of points from which the tangents
drawn to a given circle are congruent to a given segment.
240. Find the geometric locus of centers of circles described by a
given radius and tangent to a given line.
241. Two lines passing through a point JV[ are tangent to a circle
at the points A and B. The radius OB is extended past B by the
segment BC = OB. Prove that ZAMC = 3ZBMC.
242. Two lines passing through a point Al are tangent to a circle
at the points A and B. Through a point C taken on the smaller of
the arcs AB, a third tangent is drawn up to its intersection points P
and E with MA and MB respectively. Prove that (1) the perimeter
of and (2) the angle DOE (where 0 is the center of the

circle) do not depend on the position of the point C.

Hint: The perimeter is congruent to MA+MB; ZDOE =

Figure 123
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243. On a given line, find a point closest to a given circle.
244. Construct a circle which has a given radius and is tangent to a
given line at a given point.
245. Through a given point, draw a circle tangent to a given line at
another given point.
246. Through a given point, draw a circle that has a given radius
and is tangent to a given line.
247. Construct a circle tangent to the sides of a given angle, and to
one of them at a given point.
248. Construct a circle tangent to two given parallel lines and passing
through a given point lying between the lines.
249. On a given line, find a point such that the tangents drawn from
this point to a given circle are congruent to a given segment.

3 Relative positions of two circles

116. Definitions. Two circles are called tangent to each other
if they have only one common point. Two circles which have two
common points are said to intersect each other.

Two circles cannot have three common points since if they did,
there would exist two circles passing through the same three points,
which is impossible

We will call the line of centers the infinite line passing through
the centers of two circles.

117. Theorem. If two circles (Figure 125) have a common
point (A) situated outside the line of centers, then they have
one more common point (A') symmetric to the first one with
respect to the line of centers, (and hence such circles intersect).

Indeed, the line of centers contains diameters of each of the circles
and is therefore an axis of symmetry of each of them. Thus the point

Figure 125
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A' symmetric to the common point A with respect to this axis of
symmetry (and situated on the other side of it) must lie on each of
these two circles.

The axis of symmetry is the perpendicular bisector of the segment
AA' connecting two symmetric points A and A'. Thus we obtain:

Corollary. The common chord (AAç Figure 125) of two inter-
secting circles is perpendicular to the line of centers and is bisected
by it.

118. Theorem. If two circles have a common point (A,
Figures 126, 127) situated on the line of centers, then they
are tangent to each other.

The circles cannot have another common point outside the line of
centers, because then they would also have a third common point on
the other side of the line of centers, in which case they would have
to coincide. The circles cannot have another common point on the
line of centers. Indeed, then they would have two common points
on the line of centers. The common chord connecting these points
would have been a common diameter of the circles, and two circles
with a common diameter coincide.

Remark. The tangency of two circles is called external if the
circles are situated outside one another (Figure 126), and internal
if one of them is situated inside the other (Figure 127).

119. Converse theorem. If two circles are tangent (at a
point A, Figures 126, 127), then the tangency point lies on the
line of centers.

The point A cannot lie outside the line of centers, because other-
wise the circles would have one more common point, which contra-
dicts the hypothesis of the theorem.

Corollary. Two tangent circles have the same tangent line at

Figure 126 Figure 127
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their tangency point, because the line MN (Figures 126, 127) passing
through the tangency point A and perpendicular to the radius OA
is also perpeildicular to the radius O'A.

120. Various cases of relative positions of two circles.
Denote radii of the two circles by the letters I? and R' (assuming
that R � R'), and the distance between the centers by the letter d.
Examine relationships between these quantities in various cases of
mutual position of the circles. There are five such cases, namely:

R

d I?,

Figure 132

(1) The circles lie outside each other without tangency (Figure

128); in this case obviously d> R + I?'.
(2) The circles have an external tangency (Figure 129); then d =

R + R' since the tangency point lies on the line of centers.
(3) The circles intersect (Figure 130); then d R + and at

the same time d > R — R', since in the triangle OAO', the side
00' congruent to d is smaller than the sum, but greater than the
difference of the other two sides, congruent to the radii R and R'.

(4) The circles have an internal tangency (Figure 131); in this
case d = R — because the tangency point lies on the line of
centers.

(5) One circle lies inside the other without tangency (Figure 132);

then obviously d < R— .11'. In the special case when d = 0, the centers

d

Figure 128 Figure 129 Figure 130

R

d P.

Figure 131
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of both circles merge (such circles are called concentric).
Remark. We let the reader to verify the converse theorems:
(1) If d> I? + then the circles lie outside each other.
(2) If d = R + then the circles are tangent externally.
(3) If d c R + R' and at the same time d > R — then the

circles intersect.
(4) If d = R — then the circles are tangent internally.
(5) If d c R — Ftc then the circles lie one inside the other.
All these propositions are easily proved by contradiction.
121. Rotation about a point. Let a plane figure, for instance

L'�SABC (Figure 133), be tied rigidly to some point 0 of the plane.
Imagine that all points of the triangle, including its vertices, are
connected by segments to the point 0, and that the whole figure
formed by these segments, remaining in the plane of the triangle, is
moving about the point 0, say, in the direction shown by the arrow.
Let A'B'C' be the new position occupied by the triangle ABC after
some time. Since we also assume that does not change its
shape, we have: AB = A'Bç BC = B'C', and CA = C'A'. Such
a transformation of a figure in its plane is called a rotation about
a point, and the point 0 itself is called the center of rotation.
Thus, in other words, a rotation about a center 0 is a rigid motion
of a plane figure such that the distance from each point to the center
remains unchanged: AO = A'O, BO = B'O, CO = C'O, etc. Ob-
viously, all points of the rotated figure describe concentric arcs with
the common center at the point 0, whose radii are the distances of
the corresponding points from the center.

C,

B

Figure 133

Notice that central angles (Figure 133) corresponding to the con-
centric arcs, described in equal times by different points of a rotated
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figure, are congruent to each other:

LAOA' = LBOB' = LCOC' =

Indeed, the triangles AOB and A'OB' are congruent by the SSS-test,
and therefore ZAOB = ZA'OB'. Adding the angle BOA' to each
of them, we find: ZAQA' = BOB'. Similarly one can prove that
ZBOB' = COC', etc.

The common angle of rotation of all the radii is called the rota-
tion angle of the figure.

Vice versa, in order to construct the rotation of a plane figure
(e.g. the rotation AA'B'C' of AABC) about a given point 0 through
a given rotation angle, it suffices to construct concentric arcs AA',
BB', CC', etc., directed the same way, and corresponding to the
angles ZAOA', ZBOB', LCOC',..., congruent to the given rotation
angle.

EXEIWISES

250. Find the geometric locus of centers of circles tangent to a given
circle at a given point.
251. Find the geometric locus of centers of circles described by a
given radius and tangent to a given circle (consider two cases: of
external and internal tangency).
252. A secant to two congruent circles, which is parallel to the line
of centers 00', meets the first circle at the points A and B, and the
second one at the points A' and B'. Prove that AA' = BR' = 00'.
253.* Prove that the shortest segment joining two non-intersecting
circles lies on the line of centers.
Hint: Apply the triangle inequality.
254. Prove that if through an intersection point of two circles, we
draw all secant segments without extending them to the exterior of
the disks, then the greatest of these secants will be the one which is
parallel to the line of centers.
255. Construct a circle passing through a given point and tangent
to a given circle at another given point.
256. Construct a circle tangent to two given parallel lines and to a
given disk lying between them.
257. Construct a circle that has a given radius, is tangent to a given
disk, and passes through a given point. (Consider three cases: the
given point lies (a) outside the disk, (b) on the circle, (c) inside the
disk.)
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4 Inscribed and some other angles

122. Inscribed angles. An angle formed by two chords drawn
from the same point of a circle is called inscribed. Thus the angle
ABC in each of Figures 134—136 is inscribed.

B

An angle is said to intercept an arc if it is contained in the
interior of the angle and connects its sides. Thus the inscribed angle
ABC in Figure 135 intercepts the arc ADC.

123. Theorem. An inscribed angle measures a half of the
subtended arc. This theorem should be understood as follows: an
inscribed angle contains as many angular degrees as a half of the arc
it intercepts contains circular degrees.

In the proof of the theorem, consider the following three cases.
(1) The center 0 (Figure 134) lies on a side of the inscribed

angle ABC. Drawing the radius AG,-we obtain AAGB such that
GA = GB (as radii), and hence ZABO = ZBAG. The angle AGC
is exterior with respect to this triangle, and is congruent therefore
to the sum of the angles ABG and BAG, which is twice the angle
ABG. Thus the angle ABG is congruent to a half of the central
angle AGC. But the angle AGC is measured by the arc AC, i.e. it
contains as many angular degrees, as the arc AC contains circular
degrees. Therefore the inscribed angle ABC is measured by a half
of the arc AC.

(2) The center G lies in the interior of the inscribed angle ABC
(Figure 135). Drawing the diameter BD we partition the angle ABC
into two angles, of which (according to part (I)) one is measured by
a half of the arc AD, and the other by a half of the arc DC. Thus

the angle ABC is measured by the sum AD DC, which is

congruent to + DC), i.e. to AC.

B B

Figure 134 Figure 135 Figure 136
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(3) The center 0 lies in the exterior of the inscribed angle ABC.
Drawing the diameter BD we have

LABC = - WED.
But the angles AED and CED are measured (according to part
(1)) by halves of the arcs AD and CD. Therefore the angle ABC

is measured by the difference AD CD, which is congruent to

- CD), i.e. to AC.

B

124. Corollaries. (1) All inscribed angles intercepting the
same arc are congruent to each other (Figure 137), because each
of them measures a half of the same arc. If the measure of one of
such angles is denoted a, then one may say that the disk segment
AmB encloses the angle a.

(2) Any inscribed angle intercepting a diameter is right (Figure
138), because such an angle measures a half of the semicircle, and
therefore contains 90°.

125. Theorem. The angle (ACD, Figure 140) formed by a
chord and a tangent measures a half of the intercepted arc,
(i.e. of the arc DC contained in the interior of the angle).

Let us assume first that the chord CD passes through the center
0, i.e. that it is a diameter (Figure 139). Then the angle ACD is
right and contains therefore 90°. But a half of the arc CmD
also contains 90° since the arc CmD, being a semicircle, contains
180°. Thus the theorem holds true in this special case.

Consider now the general case when the chord CD does not pass
through the center (see Figure 140, where LACD is acute). Drawing
the diameter, CE we have:

LACD = LACE - LDCE.

Figure 137 Figure 138
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The angle ACE, being the angle formed by a tangent and a diameter,
measures a half of the arc CDE. The angle DCE, being inscribed,
measures a half of the arc DE. Therefore the angle ACD is measured

by the difference CDE DE, i.e. by a half of the arc CD.
Similarly one can prove that an obtuse angle (BCD, Figure 140),

also formed by a tangent and a chord, measures a half of the arc
CnED. The only distinètion in the proof is that this angle is not
the difference, but the sum of the right angle BCE and the inscribed
angle ECD.

Figure 139 Figure 140

Remark. One may think of this theorem as a degenerate case of

the previous theorem about inscribed angles. Namely, consider the
angle between a tangent and a chord, e.g. ZBCD in Figure 140,
and pick a point D' on the intercepted arc. Then LBCD becomes
the sum of LBCD' and the inscribed angle D'CD. The arc CnD
intercepted by LBCD also becomes The sum of the corresponding
arcs CD' and D'nD. Now let the point D' move along the circle
toward the point C. When D' approaches C, the position of the
secant ray CD' approaches the position of the tangent CB. Then

measures of CD! and LBCD' both approach zero, and measures of

D'nD and LD'CD approach those of CrtD and ZBCD respectively.
Tinis the property of the inscribed angle D'CD to measure a half

of D'nD, transforms into the property of the angle CBD between a
tangent and a chord to measure a half of the intercepted arc CuD.

126. Theorem. (1) An angle (ABC, Figure 141), whose vertex
ties inside a disk, is measured by the semisum of two arcs
(AC and DE), one of which is intercepted by this angle, and
the other by the angle vertical to it.

(2) An angle (ABC, Figure 142), whose vertex lies outside
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a disk, and whose sides intersect the circle, is measured by
the semidifference of the two intercepted arcs (AC and ED).

E

A

Figure 142

Drawing the chord AD (on each diagram), we obtain AABD for
which the angle ABC in question is exterior, when its vertex lies
inside the disk, and interior, when it lies outside the disk. In the
first case therefore ZABC = ZADC + ZDAE, and in the second
case ZABC = .LADC — ZDAE. But the angles ADC and DAE, as
inscribed, are measured by halves of the arcs AC and DE. Thus in

the first case the angle ABC is measured by the sum AC + DE

congruent to (AC + DE), and in the second case by the difference

AC DE congruent to - DE).

EXERCISES

Computation problems

258. Compute the degree measure of an inscribed angle intercepting

an arc congruent to part of the circle.
259. A disk is partitioned into two disk segments by a chord dividing
the circle in the proportion 5 : 7. Compute the angles enclosed by
these segments.
260. Two chords intersect at an angle 36°15'30". Express in degrees,
minutes, and seconds the two arcs intercepted by this angle and the
angle vertical to it, if one of these arcs measures 2/3 of the other.
261. The angle between two tangents drawn from the same point to
acircle is 25° 15'. Compute the arcs contained between the tangency
points.

Figure 141
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262. Compute the angle formed by a tangent and a chord, if the
chord divides the circle in the proportion 3: 7.
263. Two circles of the same radius intersect at the angle 2d/3.
Express in degrees the smaller of the arcs contained between the
intersection points.
Remark: The angle between two intersecting arcs is defined as the
angle between the tangent lines to these arcs drawn at the intersec-
tion point.
264. A tangent is drawn through one endpoint of a diameter and a
secant through the other, so that they make the angle 20°30'. Com-
pute the smaller of the arcs contained between the tangent and the
secant.

Find the geometric locus of:

265. The feet of the perpendiculars dropped from a given point A
to lines passing through another given point B.
266. The midpoints of chords passing through a point given inside
a disk.
267. Points from which a given circle is seen at a given angle (i.e.
the angle between two tangents to the given circle drawn from the
point is congruent to the given angle).

Prove theorems:

268. If two circles are tangent, then any secant passing through
the tangency point cuts out on the circles opposed arcs of the same
angular measure.
269. Prove that if through the tangency point of two circles two
secants are drawn, then the chords connecting the endpoints of the
secants are parallel.
270. Two circles intersect at the points A and B, and through A, a
secant is drawn intersecting the circles at the points C and D. Prove
that the measure of the angle CBD is constant, i.e. it is the same
for all such secants.
271. In a disk centered at 0, a chord AB is drawn and extended
by the segment BC congruent to the radius. Through the point
C and the center 0, a secant CD is drawn, where D denotes the
second intersection point with the circle. Prove that the angle AOD
is congruent to the angle ACD tripled.
272. Through a point A of a circle, the tangent and a chord AB
are drawn. The diameter perpendicular to the radius GB meets
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the tangent and the chord (or its extension) at the points C and D
respectively. Prove that AC = CD.
273. Let PA and PB be two tangents to a circle drawn from the
same point P, and let BC be a diameter. Prove that CA and OP
are parallel.
274. Through one of the two intersection points of two circles, a
diameter in each of the circles is drawn. Prove that the line con-
necting the endpoints of these diameters passes through the other
intersection point.
275. A diameter AR and a chord AC form an angle of 30°. Through
C, the tangent is drawn intersecting the extension of AB at the point
D. Prove that is isosceles.

5 Construction problems

127. Problem. To construct a right triangle given its hypotenuse
a and a leg b (Figure 143).

b
A B

Figure 143 Figure 144

On a line MN, mark AR = a and describe a semicircle with AR
as a diameter. (For this, bisect AR, and take the midpoint for the
center of the semicircle and for the radius.) Then draw an arc
of radius congruent to b centered at the point A (or B). Connect the
intersection point C of the arc and the semicircle, with the endpoints
of the diameter AR. The required triangle is ABC, since the angle
C is right a is the hypotenuse, and b is a leg.

128. Problem. To erect a perpendicular to a ray AB (Figure
144) at the endpoint A without extending the ray beyond this point.

- Take outside the line AR any point 0 such that the circle, cen-
tered at 0 and of radius congruent to the segment OA, intersects the
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ray AB at some point C. Through this point C, draw the diameter
CD and connect its endpoint D with A. The line AD is the required
perpendicular, because the angle A is right (as inscribed intercepting
a diameter).

129. Problem. Through a given point, to draw a tangent to a
given circle.

Consider two cases:
(1) The given point (C, Figure 145) lies on the circle itself Then

draw the radius to this point, and at its endpoint C, erect the perpen-
dicular AB to this radius (e.g. as explained in the previous problem).

B

Figure 145 Figure 146

(2) The given point (A, Figure 146) lies outside the disk bounded
by the given circle. Then, connecting A with the center 0, construct
the circle with A0 as a diameter. Through the points B and B'
at which this circle intersects the given one, draw the lines AB and
AB'. These lines are the required tangents, since the angles OBA
and OB'A are right (as inscribed intercepting a diameter).

Corollary. Two tangent segments, drawn to a circle from a
point outside the disk bounded by it, are congruent and fonn congru-
ent angles with the line connecting this point 'with the center. This
follows from the congruence of the right triangles 0BA and 0B'A
(Figure 146).

130. Problem. Given two circles, to construct a common tangent
(Figure 147).

(1) Analysis. Suppose that the problem has been solved. Let
AB he a common tangent, A and B the tangency points. Obviously,
if we find one of these points, e.g. A, then we can easily find the
other. Draw the radii OA and O'B. These radii, being perpendicular
to the common tangent, are parallel to each other. Therefore, if
we draw through 0' the line O'C parallel to BA, then O'C will be
perpendicular to OC. Thus, if we draw a circle of radius OC centered

A C B

B'
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at 0, then O'C will be tangent to it at the point C. The radius of
this auxiliary circle is GA — CA = GA — O'B, i.e. it is congruent to
the difference of the radii of the given circles.

Construction. Thus the required construction can be performed
as follows. Describe the circle centered at 0 of radius congruent to
the difference of the given radii. From 0', draw a tangent O'C to this
circle (as described in the previous problem). Through the point C,
draw the radius OC and extend it beyond C up to the intersection
point A with the given circle. Finally, through the point A, draw the
line AB parallel to CO'.

Research. The construction is possible when the center 0' lies in
the exterior of the auxiliary circle. In this case we obtain two common
tangents to the circles, each parallel to one of the two tangents from
the point 0' to the auxiliary circle. These two common tangents arecalled external.

For the point 0' to be in the exterior of the auxiliary circle,
the segment 00' has to be greater than the difference of the radii
of the given circles. According to the results of

§120, this is true
unless one of the given disks contains the other. When one of the
circles lies inside the other, obviously, no common tangent is possible.
When the circles have an internal tangency, the perpendicular to the
line of centers erected at the tangency point is, evidently, the only
common tangent of the circles. Otherwise, i.e. when neither of the
disks contains the other, there exist, as we have seen, two external
common tangents.

When the two given circles do not intersect, i.e. when 00' is
greater than the sum of the given radii, there also exist two inter-
nal common tangents (Figure 148) which can be constructed as
follows.

(2) Analysis. Suppose that the problem has been solved, and

Figure 147 Figure 148
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let AB be such a common tangent. Draw the radii OA and O'B to
the tangency points A and B. These radii, being perpendicular to
the common tangent, are parallel to each other. Thus, if we draw
from 0' the line O'CIIBA and extend the radius GA beyond A to its
intersection with O'C at the point C, then OC will be perpendicular
to G'C. Therefore the auxiliary circle described about the center 0
by the radius OC will be tangent to the line O'C at the point C.
The radius of the auxiliary circle is GA + AC = GA + O'B, i.e. it is
congruent to the sum of the radii of the given circles.

Construction. Thus the construction can be performed this
way: draw the circle centered at 0 of radius congruent to the sum of
the given radii, From the point draw a line O'C tangent to the
auxiliary circle at the point C. Connect the tangency point C with
0, and through the intersection point A of GC with the circle, draw
the line ABIICG'.

The second internal common tangent is parallel to the other tan-
gent from 0' to the auxiliary circle and is constructed similarly.

When the segment GO' is congruent to the sum of the given
radii, the two given circles have an external tangency In this
case, the perpendicular to the line of centers erected at the tangency
point is, evidently, the only internal common tangent of the circles.
Finally, when the two disks overlap, no internal tangents exist.

131. Problem. On a given segment AB, to construct a disk
segment enclosing a given angle (Figure 149).

Analysis. Suppose that the problem has been solved, and let
AmB be a disk segment enclosing the given angle a, i.e. such that
any angle ACE inscribed in it is congruent to a. Draw the auxiliary
line AE tangent to the circle at the point A. Then the angle BAE
formed by the tangent and the chord AB, is also congruent to the
inscribed angle ACE, since both measure a half of the arc AnB.
Now let us take into account that the center 0 of the circle lies on
the perpendicular bisector DO of the chord AB, and at the same
time on the perpendicular (AG) to the tangent (AE) erected at the
tangency point. This suggests the following construction.

Construction. At the endpoint A of the segment AB, construct
an angle BAE congruent to a. At the midpoint of AB erect the
perpendicular DO, and at the point A, erect the perpendicular to
AE. Taking the intersection point 0 of these perpendiculars for the
center, describe the circle of radius AG.

Proof. Any angle inscribed into the disk segment AmB is mea-
sured by a half of the arc AnD, and the half of this arc is also the
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measure of LBAE = a. Thus Am.B is the required disk segment.
Remark. On Figure 149, the disk segment AmB enclosing the

angle a, is constructed on the upper side of the line AR. Another
such disk segment can be constructed symmetric to AmB about the
axis AR. Thus, one could say that the geometric locus of points, from
which a given line segment AR is seen at a given angle a, consists of
the arcs of two disk segments, each enclosing the given angle, which
are symmetric to each other about the axis AR.

Figure 149

132. The method of geometric loci. Many construction prob-
lems can be successfully approached using the concept of geometric
locus. This method, known already to Plato (4th century B.C.), can
be described as follows. Suppose that a proposed problem consists in
finding a point which has to satisfy certain conditions. Discard one
of these conditions; then the problem becomes under-determined:
it may admit infinitely many solutions, i.e. infinitely many points
satisfying the remaining conditions. These points form a geometric
locus. Construct this locus if possible. Then reinstall the previously
discarded condition, but discard another one; the problem will again
have infinitely many solutions which will form another geometric lo-
cus. Construct it if possible. A point satisfying all the conditions of
the original problem belongs to both geometric loci, i.e. it must lie
in their intersection. The construction will be possible or impossible
depending on whether the loci intersect or not, and the problem will
have as many solutions as there are intersection points. Let us illus-
trate this method by an example, which also shows that sometimes
adding auxiliary lines to a diagram can be useful.

133. Problem. To construct a triangle, given its base a, the
angle at the vertex A, and the sum s of the lateral sides.

C

Figure 150
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Let ABC (Figure 150) be the required triangle. In order to add
to the diagram the given sum of lateral sides, let us extend BA past
A and mark on it the segment BM = s. Connecting Al with C, we
obtain an auxiliary triangle BMC. If we manage to construct this
triangle, then we can easily construct the required triangle ABC.
Indeed, note that the triangle CAM is isosceles (AC = AM), and
hence A can be found as the intersection of BM with the perpendic-
ular bisector of MC.

The construction of the triangle reduces to finding the
point Al. Since the triangle CAM is isosceles, we have LIV! =
LMCA = 1LBAC. We see that the point Al must satisfy two
conditions: it has distance s from B, and (2) the angle at which
the segment BC is seen from Al is congruent to LA. Thus the con-
struction of Al reduces to intersecting two geometric loci such that
we know how to construct each of them. The problem has no solu-
tion when these loci do not intersect, and has one or two solutions
depending on whether the loci are tangent to each other or intersect.
On our diagram, we obtain two (congruent!) triangles ABC and
A'BC satisfying the requirements of the problem.

Sometimes a problem requires finding a line (rather than a point)
satisfying several conditions. Discarding one of the conditions, we
will obtain infinitely many lines satisfying the remaining conditions.
It may happen that all such lines can be described in terms of a cer-
tain curve (for instance, as all lines tangent to a certain circle). Dis-
carding another condition and reinstalling the previously discarded
one, we will obtain infinitely many lines again, which may define
some other curve. Constructing, if possible, both curves we then
determine the required line. Let us give an example.

134. Problem. To draw a secant of two given disks 0 and cc
so that the segments of the secant contained inside the disks are con-
gruent respectively to two given segments a and a'.

If we take into account only one of the requirements, for example,
that the part of the secant inside the disk 0 is congruent to a, then
we obtain infinitely many secants which have to be equidistant from
the center of the disk (since congruent chords are equidistant from
the center). Therefore, if we construct inside 0 a chord congruent
to a and then describe the circle concentric to 0 of radius congruent
to the distance from the chord to the center, then all the secants
in question will be tangent to this auxiliary circle. Similarly, taking
into account only the second condition, we will see that the required
secant must be tangent to the second auxiliary circle concentric to
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0'. Thus the problem reduces to constructing a common tangent to
two circles.

EXERCISES

Prove theorems

276. Given two circles with external tangency, prove that the corn-
mon tangent passing through the tangency point, bisects the seg-
ments of external common tangents bounded by the tangency points.
277. To two circles tangent externally at a point A, a common exter-
nal tangent BC is drawn (where B and C are the tangency points).
Prove that the angle BAC is right.
Hint: Draw through A a common tangent and examine the triangles
ABD and ADC.

Construction problems

278. Given two points, construct a line such that the perpendiculars
dropped from these points to this line have given lengths.

279. Construct a line making a given angle with a given line and
tangent to a given circle. (How many solutions are there?)
280. From a point outside a disk, construct a secant such that its
segment inside the disk is congruent to a given segment.
281. Construct a circle that has a given radius, and is tangent to a
given line and a given circle.
282.* Construct a circle tangent to a given line and tangent to a
given circle at a given point (two solutions).
283. Construct a circle tangent to a given circle and tangent to a
given line at a given point (two solutions).

284. Construct a circle that has a given radius and cuts out chords

of given lengths on the sides of a given angle.
285. Construct a disk tangent to two given disks, and to one of them
at a given point. (Consider tlu'ee cases: the required disk contains
(1) both given disks, (2) one of them, (3) none of them.)
286. Construct a circle tangent (externally or internally) to three
given congruent circles.
287.* Into a given circle, inscribe three congruent disks tangent to
each other and to the given circle.
288.* Through a given point inside a disk, draw a chord such that
the difference of its segments is congruent to a given segment.
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Hint: Draw the concentric circle passing through the given point,
and construct in this circle a chord of the given length.
289. Through an intersection point of two circles, draw a secant such
that its segment inside the given disks is congruent to a given length.
Hint: Construct a right triangle whose hypotenuse is the segment
between the centers of the given disks, and one of the legs is congruent
to a half of the given length.
290. From a point outside a disk, draw a secant ray such that its
external and internal parts are congruent.
Hint: Let 0 be the center of the disk, R its radius, and A the given
point. Construct where AB = R, OB = 2R. If C is the
midpoint of the segment OB, then the line AC is the required one.
291. Construct a circle tangent to two given non-parallel lines (1) if
the radius is given, (2) if instead one of the tangency points is given.
292. On a given line, find a point from which a given segment is seen
at a given angle.
293. Construct a triangle, given its base, the angle at the vertex,
aud the altitude.
294. Construct a triangle, given one of its angles and two of its
altitudes, one of which is drawn from the vertex of the given angle.
295. Construct a tangent to the arc of a given sector such that the
segment of the tangent between the extensions of the radii bounding
the sector is congruent to a given segment.
Hint: Reduce the problem to the previous one.
296. Construct a triangle, given its base, the angle at the vertex;
and the median bisecting the base. -

297. Given the positions of two segments a and b in the plane, find
a point from which the segment a is seen at a given angle a, and the
segment b at a given angle
298. In a given triangle, find a point from which its sides are seen
at the same angle.
299.* Construct a triangle, given its angle at the vertex, and the
altitude and the median drawn to the base.
Hint: Double the median extending it past the base, connect the
endpoint with the vertices at the base, and consider the parallelogram
thus formed.

Construct a triangle, given its base, an angle adjacent to the
base, and the angle between the median drawn from the vertex of
the first given angle and the side to which this median is drawn.
301. Construct a parallelogram, given its diagonals and an angle.
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302.* Construct a triangle, given its base, its angle at the vertex,
and the sum or the difference of the other t\VO sides.
303. Construct a quadrilateral, given its diagonals, two adjacent
sides, and the angle between the two remaining sides.
304.* Given three points A, B, and C, construct a line passing
through A such that the distance between the perpendiculars to this
line dropped from the points B and C is congruent to a given seg-
ment.

6 Inscribed and circumscribed polygons

135. Definitions. If all vertices of a polygon (ABCDE, Figure
151) lie on a circle, then the polygon is called inscribed into the
circle, and the circle is called circumscribed about the polygon.

If all sides of a polygon (MNPQ, Figure 151) are tangent to a
circle, then the polygon is called circumscribed about the circle,
and the circle is called inscribed into the polygon.

Figure 1S2

136. Theorems. (1) About any triangle, a circle can be
circumscribed, and such a circle is unique.

(2) Into any triangle, a circle can be inscribed, and such
a circle is unique.

(1) Vertices A, B, and C of any triangle are non-collinear. As we
have seen in § 104, any three such points lie on a circle, and such a
circle is unique.

(2) If a circle tangent to all sides of a triangle ABC exists (Figure
152), then the center must be a point equidistant from these sides.

p

C

p

Figure 151

p 8
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Let us prove that such a point exists. The geometric locus of points
equidistant from the sides AB and AC is the bisector AM of the
angle A The geometric locus of points equidistant from the
sides BA and BC is the bisector BN of the angle B. These two
bisectors will, evidently, intersect inside the triangle at some point 0.
This point will be equidistant from all the sides of the triangle, since
it lies in both geometric loci. Thus, in order to inscribe a circle into
a triangle, bisect two of its angles, say A and B, take the intersection
point of the bisectors for the center, and take for the radius any of
the perpendiculars OP, OQ, or OR, dropped from the center to the
sides of the triangle. The circle will be tangent to the sides at the
points P, Q, and R, since at these points the sides are perpendicular
to the radii at their endpoints lying on the circle Another
such an inscribed circle cannot exist, since two bisectors can intersect
only at one point, and from a point only one perpendicular to a line
can be dropped.

Remark. We leave it to the reader to verify that the center of the
circumscribed circle lies inside the triangle if and only if the triangle
is scalene. For an obtuse triangle, the center lies outside it, and for a
right triangle at the midpoint of the hypotenuse. The center of the
inscribed circle always lies inside the triangle.

Corollary. The point 0 (Figure 152), being equidistant from
the sides CA and CB, must lie on the bisector of the angle C. There-
fore bisectors of the three angles of a triangle intersect at one point.

Figure 153
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137. Exscribed circles. The circles tangent to one side of a
triangle and to the extensions of two other sides (such circles lie
outside the triangle, Figure 153) are called exscribed. Each triangle
has three such circles. To construct them, draw bisectors of the
exterior angles of the triangle ABC, and take their intersection points
for the centers. Thus, the center of the circle inscribed into the angle
A, is the point 0, i.e. the intersection point of the bisectors BO and
CO of the exterior angles not supplementary to A. The radius of
this circle is the perpendicular dropped from 0 to any of the sides
of the triangle.

138. Inscribed quadrilaterals. (1) In a convex inscribed
quadrilateral, the sum of opposite angles is congruent to
two right angles.

(2) Conversely, if a convex quadrilateral has the sum of
opposite angles congruent to two right angles, then it can
be circumscribed by a circle.

(1) Let ABCD (Figure 154) be an inscribed convex quadrilateral;
it is required to prove that

LB+LD=2d and LA+LC=2d.

Since the sum of all the four angles of any convex quadrilateral is
4d then it suffices to prove only one of the required equalities.
Let us prove for example that LB + LD = 2d.

The angles B and D, as inscribed, are measured: the former by a
half of the arc ADC, and the latter by a half of the arc ABC. There-

fore the sum LB + LD is measured by the sum ADC ABC,

which is congruent to + ABC), i.e. a half of the whole
circle. Thus LB + LD = 180° = 2d.

(2) Let ABCD (Figure 154) be a convex quadrilateral such that
LB + LD = 2d, and therefore LA + LC = 2d. It is required to prove
that a circle can be circumscribed about such a quadrilateral.

Through any three vertices of it, say through A, B, and C, draw
a circle (which is always possible). The fourth vertex D must lie on
this circle. Indeed, if it didn't, it would lie either inside the disk, or
outside it. In either case the angle D would not measure a half of
the arc ABC, and therefore the sum LB + LD would not measure
the semisum of the arcs ADC and ABC. Thus this sum would differ
from 2d, which contradicts the hypothesis.

- Corollaries. (1) Among all parallelograms, rectangles are the
only ones which can be circumscribed by a circle.
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(2) A trapezoid can be circumscribed by a circle only if it is isosce-

139. Circumscribed quadrilaterals. In a circumscribed
quadrilateral, the sums of opposite sides are congruent.

Let ABCD (Figure 155) he a circumscribed quadrilateral, i.e.
the sides of it are tangent to a circle. It is required to prove that
AB+CD= BC+AD.

Denote the tangency points by the letters M, N, P, and Q. Since
two tangents drawn from the same point to a circle are congruent, we
have AM = AQ, BM = BN, CN = CP, and DP = DQ. Therefore

AM+MB+CP+PD=AQ+QD+BN+NC,
i.e. AB+CD=AD+BC.

AOC
Figure 154 Figure 155

EXEIWISES

305. Into a given circle, inscribe a triangle whose angles are given.
306. About a given circle, circumscribe a triangle whose angles are
given.
307. Construct a triangle, given the radius of its inscribed circle, the
angle at the vertex, and the altitude.
308. Into a given circle, inscribe a triangle, given the sum of two of
its sides and the angle opposite to one of them.
309. Into a given circle, inscribe a quadrilateral, given one of its
sides, and both angles not adjacent to it.
310. Inscribe a circle into a given rhombus.
311. Into a given sector, inscribe a circle tangent to the radii and
the arc bounding the sector.
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312.* Into an equilateral triangle, inscribe three disks which are
pairwise tangent to each other, and each of them is tangent to two
sides of the triangle.
313. Construct a quadrilateral assuming that it can be circumscribed
by a circle, and that three of its sides and a diagonal are given.
314. Construct a rhombus, given its side and the radius of the in-
scribed circle.
315. Circumscribe an isosceles right triangle about a given circle.
316. Construct an isosceles triangle, given its base and the radius of
the inscribed circle.
31 Through two given points on a circle, construct two parallel
chords with a given sum.
318.* On a circle circumscribed about an equilateral AABC, a point
Al is taken. Prove that the greatest of the segments MA, MB, MC
is congruent to the sum of the other two.
31 The feet of perpendiculars dropped from a point of a circle to
the sides of an inscribed triangle lie on the same line (called Simson's
line).
Hint: A proof is based on properties of inscribed angles and
angles of inscribed quadrilaterals

7 Four concurrency points in a triangle
140. We have seen that:
(1) the three perpendicular bisectors to the sides of a triangle

intersect at one point (which is the center of the circumscribed circle
and is often called the circumcenter of the triangle);

(2) the three bisectors of the angles of a triangle intersect at one
point (which is the center of the inscribed circle, and often called
incenter of the triangle).

The following two theorems point out two more remarkable points
in a triangle: (3) the intersection point of the three altitudes, and
(4) the intersection point of the three medians.

141. Theorem. Three altitudes of a triangle intersect at
one point.

Through each vertex of (Figure 156), draw the line par-
allel to the opposite side of the triangle. Then we obtain an auxiliary
triangle A'B'C' whose sides are perpendicular to the altitudes of the
given triangle. Since C'B = AC = BA' (as opposite sides of parallel-
ograms), then the point B is the midpoint of the side A'C'. Similarly,
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C is the midpoint of A'B' and A of B'C'. Thus the altitudes AD,
BE, and CF of AABC are perpendicular bisectors to the sides of

and such perpendiculars, as we know from § 104, intersect
at one point.

Remark. The point where the three altitudes of a triangle in-
tersect is called its orthocenter. The reader may prove that the
orthocenter of an acute triangle lies inside the triangle, of an obtuse
triangle outside it, and for a right triangle coincides with the vertex
of the right angle.

C' B

C

142. Theorem. The three medians of a triangle intersect
at one point; this point cuts a third part of each median
measured from the corresponding side.

In AABC (Figure 157), take any two medians, e.g. AE and BD,
intersecting at a point 0, and prove that

and

For this, bisect OA and OB at the points F and C and consider the
quadrilateral DEGF. Since the segment FC connects the midpoints
of two sides of AABO, then FG1IAB and FC = The segment
DE, too, connects the midpoints of two sides of AABC, and hence
DEI1AB and DE = this we conclude that DEIIFG and
DE = FC, and therefore the quadrilateral DEGF is a parallelogram

It follows that OF = OE and OD = OG, i.e. that OE = IAE
and OD =

If we consider now the third median and one of the medians AE
or BD, then we similarly find that their intersection point cuts from
each of them a third part measured from the foot. Therefore the

B A'

A C
E

A

rigure 156 Figure 157
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third median must intersect the medians AE and ED at the very
same point 0.

Remarks. (1) It is known from physics that the intersection point
of the medians of a triangle is the center of mass (or centroid) of
it, also called barycenter; it always lies inside the triangle.

(2) Three (or more) lines intersecting at one point are called
concurrent. Thus we can say that the orthocenter, harycenter,
incenter and circumcenter of a triangle are concurrency points of its
altitudes, medians, angle bisectors, and perpendicular bisectors of its
sides respectively.

EXERCISES

320. Construct a triangle, given its base and two medians drawn
from the endpoints of the base.
321. Construct a triangle, given its three medians.
322. Into a given circle, inscribe a triangle such that the extensions
of its angle bisectors intersect the circle at three given points.
323. Into a given circle, inscribe a triangle such that the extensions
of its altitudes intersect the circle at three given points.
324.* Construct a triangle given its circumscribed circle and the
three points on it at which the altitude, the angle bisector and the
median, drawn from the same vertex, intersect the circle.
325.* Prove that connecting the feet of the altitudes of a given tri-
angle, we obtain another triangle for which the altitudes of the given
triangle are angle bisectors.
326.* Prove that the barycenter of a triangle lies on the line segment
connecting the circumcenter and the orthocenter, and that it cuts a
third part of this segment measured from the circumcenter.
Remark: This segment is called Euler's line of the triangle.
327.* Prove that for every triangle, the following nine points lie on
the same circle (called Euler's circle, or the nine-point circle of
the triangle): three midpoints of the sides, three feet of the altitudes,
and three midpoints of the segments connecting the orthocenter with
the vertices of the triangle.
328.* Prove that for every triangle, the center of Euler's circle lies
on Euler's line and bisects it.
Remark: Moreover, according to Feuerbach's theorem, for every
triangle, the nine-point circle is tangent to the inscribed and all three
exscribed circles.



Chapter 3

SIMILARITY

1 Mensuration

143. The problem of mensuration. So far, comparing two
segments, we were able to determine if they are congruent, and if they

are not then which of them is greater We have encountered
this task when studying relationships between sides and angles of
triangles 45), the triangle inequality and some other
topics 109—111, 120). Yet such comparison of segments
does not provide an accurate idea about their magnitudes.

Now we pose the problem of establishing precisely the concept of
length of segments and expressing lengths by means of numbers.

Figure 158

144. A common measure of two segments is a third segment

such that it is contained in each of the first two a whole number of
times with no remainder. Thus, if a segment AM (Figure 158) is
contained 5 times in AB and 3 times in CD, then AM is a common
measure of AB and CD. One can similarly talk about common
measures of two arcs of the same radius, of two angles, and more
generally of any two quantities of the same denomination.

Evidently, if the segment AM is a common measure of the seg-

117
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ments AR and CD, then dividing AM into 2, 3, 4, etc. congruent
parts we obtain smaller common measures of the same segments.
Therefore, if two segments have a common measure, one can say
that they have infinitely many common measures. One of them will
be the greatest.

145. The greatest common measure. Finding the greatest
common measure of two segments is done by the method of con-
secutive exhaustion, quite similar to the method of consecutive
division which is used hi arithmetic for finding the greatest common
factor of two whole numbers. The method (also called the Euclidean
algorithm) is based on the following general facts.

a a

—j
I

b bC:
Figure 159 Figure 160

(1) If the smaller one of two segments (a and b, Figure 159)
is contained in the greater one a whole number of times
with no remainder, then the greatest common measure of
the two segments is the smaller segment.

Let a segment b be contained in a segment a exactly, say, 3 times.
Since b is, of course, contained in itself once, then b is a common
measure of a and b. This common measure is the greatest since no
segment greater than b can be contained in b a whole number of
times.

(2) If the smaller one of two segments (b in Figure 160)
is contained in the greater one (a) a whole number of times
with some remainder (r), then the greatest common measure
of these segments (if it exists) must be the greatest common
measure of the smaller segment (b) and the remainder (r).

Let, for instance,
a =

We can derive from this equality two conclusions:
(i) If there exists a segment fitting some number of times (i.e.

without remainder) into b and some number of times into r, then
it also fits a whole number of times into a. For instance, if some
segment is contained in b exactly 5 times, and in r exactly 2 times,
then it is contained in a exactly 5 + 5 + 5 + 2 = 17 times.
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(ii) Conversely, if there exists a segment fitting several times,
remainder, into a and b, then it also fits without remainder

into r. For example, if some segment is contained in a exactly 17
times, and in b exactly 5 times, then it is contained exactly 15 times
in that part of the segment a which is congruent to 3b. Therefore in
the remaining part of a, i.e. in r, it is contained 17 — 15 = 2 times
exactly.

Thus the two pairs of segments: a and b, and b and r, have the
same common measures (if they exist), and therefore their greatest
common measures also have to lie the same.

These two theorems should also be supplemented by the following
Archimedes' axiom:

However long is the greater segment (a), and however
short is the smaller one (b), subtracting consecutively 1,2,3,
etc. times the smaller segment from the greater one, we will
always find that after some m-th subtraction, either there is
no remainder left, or there is a remainder which is smaller
than the smaller segment (b). In other words, it is always possible
to find a sufficiently large whole nunTher rn such that either mb = a,

or mb < a < (in + 1)b.

A

C FD

Figure 161 -

146. The Euclidean algorithm. Suppose it is required to find
the greatest common measure of two given segments AB and CD
(Figure 161).

Using a compass, exhaust the greater segment by marking on it
the smaller one as many times as possible. According to Archimedes'
axiom, one of two outcomes will occur: either (1) CD will fit into
AR several times with no remainder, and then according to the 1st
theorem the required measure will he CD, or (2) there will be a
remainder EB smaller than CD (as in Figure 161). According to
the second theorem, the problem will then reduce to finding the
greatest common measure of the two smaller segments, namely CD
and the remainder EB. To find it, do as before, i.e. exhaust CD
by marking on it EB as many times as possible. Again, one of two
outcomes will occur: either (1) ER will fit into CD several times
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with no remainder, and then the required measure will be ER, or
(2) there will he a remainder FD smaller than ER (as in Figure
161). The problem is then reduced to finding the greatest common
measure of another pair of smaller segments, namely ER and the
second remainder FD.

Continuing this process further, we can encounter one of the fol-
lowing two cases:
(i) after some exhaustion step there will be no reniainder left, or
(ii) the process of consecutive exhaustion will continue indefinitely
(assuming that we can mark segments as small as desired, which is
possible, of course, only theoretically).

In the former case, the last remainder will he the greatest common
measure of the given segments. One can similarly find the greatest
common measure of two arcs of the same radius, of two angles, etc.

In the latter case, the given segments cannot have any common
measure. To see this, let us assume that the given segments AR and
CD have a common measure. This measure, as we have seen, must
be contained a whole number of times not only in AR and CD, hut
also in the remainder ER, and therefore in the second remainder
FD, and in the third, and in the fourth, and so on. Since these
remainders become smaller and smaller, each of them will contain
the common measure fewer times than the previous one. For in-
stance, if ER contains the common measure 100 times (in general in
times), then FD contains it fewer than 100 times, i.e. 99 at most.
The next remainder contains it fewer than 99 times, i.e. 98 at most,
and so on. Since the decreasing sequence of positive whole numbers:
100, 99, 98,... (in general in, in — 1, rn — 2,...) terminates (however
large in. is), then the process of consecutive exhaustion must termi-
nate as well, i.e. no remainder will he left. Thus, if the process of
consecutive exhaustion never ends, then the given segments cannot
have a common measure.

147. Commensurable and incommensurable segments.
Two segments are called commensurable if they have a common mea-
sure, and incommensurable if such a common measure does not exist.

Existence of incommensurable segments cannot be discovered ex-
periinentally. In the process of endless consecutive exhaustion we
will always encounter a remainder so small that it will appear to fit
the previous remainder a whole number of times: limitations of our
instruments (compass) and our senses (vision) will not allow us to
determine if there is any remainder left. However, incommensurable
segments do exist, as we will now prove.



1. Mensuration 121

148. Theorem. The diagonal of a square is incommensu-
rable to its side.

Since the'diagonal divides the square into two isosceles right trian-
gles, then this theorem can be rephrased this way: the hypotenuse
of an isosceles right triangle is incommensurable to its leg.

Let us prove first the following property of such a triangle: if
we mark on the hypotenuse AC (Figure 1 of AABC the segment
AD congruent to the leg, and draw DE I AC, then the right triangle
DEC thus formed will be isosceles, and the part BE of the leg BC
will be congruent to the part DC of the hypotenuse.

To prove this, draw the line BD and consider angles of the trian-
gles DEC and BED. Since the triangle ABC is right and isosceles,
then Li = L4, and therefore Li = 45°. Therefore in the right trian-
gle DEC we have L2 = 45° too, so that ADEC has two congruent
angles, and hence two congruent sides DE and DC.

A C

Furthermore, in the triangle BED, the angle 3 is congruent to
the right angle B minus the angle ABD, and the angle 5 is congruent
to the right angle ADE less the angle ADB. But LADB LABD
(since AB = AD), and hence L3 = L5. Then the triangle BED
must be isosceles, and therefore BE = DE = DC.

Having noted this, let us apply the Euclidean algorithm to the
segments AB and AC.

Since AC> AB and AC < AB + BC, i.e. AC CAB, then
the leg AB fits the hypotenuse AC only once, and the remainder
is DC. Now we have to use the remainder DC to exhaust AB,
or equivalently, BC. But the segment BE is congruent to DC by

E

Figure 162
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the above observation. Therefore we need to further mark DC of
EC. But EC is the hypotenuse of the isosceles right triangle DEC.
Therefore the Euclidean algorithm now reduces to exhausting the
hypotenuse EC of an isosceles right triangle by its leg DC. In its
turn, this process will reduce to exhausting the hypotenuse of a new,
smaller isosceles right triangle by its leg, and so on, indefinitely.
Obviously, this process never ends, and therefore a common measure
of the segments AC and AD does not exist.

149. Lengths of segments. The length of a segment is ex-
pressed by a number obtained by comparing this segment with an-
other one, called the unit of length, such as e.g. meter, centimeter,
yard, or inch.

Suppose we need to measure a given segment a (Figure 163) using
a unit b, commensurable with a. Tf the greatest common measure of
a and b is the unit b itself, then the length of a is expressed by a
whole number. For instance, when b is contained in a three times,
one says that the length of a is equal to 3 units (i.e. a = 3b). If the
greatest common measure of a and b is a part of b, then the length
is expressed by a fraction. FOr example, if is a common measure,
and it is contained in a nine times, then one says that the length of
a is equal to 9/4 units (i.e. a = tb).

Whole numbers and fractions are called rational numbers.
Thus, the length of a segment commensurable with a unit of length

is expressed by a rational number telling us how many times some
fraction of the unit is contained in the given segment.

a H

H

H

b

Figure 163 figure 164

150. Approximations. The discovery of incommensurable seg-
ments was made by ancient Greeks. It shows that rational nurn-
hers are, generally speaking, insufficient for expressing lengths of
segments. For instance, according to §148, no rational number can
express the length of the diagonal of a square, when its side is taken
for the unit of length.
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Measuring a segment a incommensurable with the unit b is done
indirectly: instead of the segment a, one measures other segments
commensurable with the unit and such that they. differ from a by as
little as one wishes. Namely, suppose we want to find commensurable
segments that would differ from a by less than b. Then divide the
unit into 10 equal parts (Figure 164) and repeat one such part as
many times as needed to exhaust a. Suppose thb is contained in
a thirteen times with a remainder smaller than We obtain a
segment a' commensurable with b and smaller than a. Adding
once more, we obtain another segment a" also commensurable with
b and greater than a. The lengths of the segments a' and a" are
expressed by the fractions 13/10 and 14/10. These numbers are
considered as approximations to the length of the segment a, the
first from below, the second from above. Since they both differ
from a by less than of the unit, one says that each of them
expresses the length with the precision of up to (or with the
error smaller than

In general, to approximate the length of a segment a with the
precision of up to of a unit b, one divides the unit into n equal
parts and finds how many times the *th part of the unit is contained
in a. If it is contained in times with a remainder smaller than
then the rational numbers and !Th±i are said to approximate the
length of a with the precision of up to the first from below, and
the second from above.

151. Irrational numbers. The precise length of a segment in-
commensurable with the unit of length is expressed by an irrational
number. 1 It can be represented by an infinite decimal fraction
constructed as follows. One consecutively computes approximations
from below for the length of the segment a with the precision of up
to 0.1, then up to 0.01, then up to 0.001, and continues this process
indefinitely, each time improving the precision 10 times. This way,
one obtains decimal fractions first with one place after the decimal

'The first definition of irrational numbers, usually attributed to a Greek math-
ematician Eudoxus (408 — 355 B.C.), is found in Book 5 of Euclid's "Elements."
Given a segment incommensurable with the unit of length, all segments commen-
surable with the unit (and respectively all fractions rn/n expressing their lengths)
are partitioned into two disjoint groups: those which are smaller than the given
segment, and those which are greater. According to Eudoxus, an irrational num-
ber is such a partition (a cut, in the modern terminology) of the set of all rational
numbers. This somewhat abstract construction coincides with one of the modern
definitions of irrational numbers proposed by It. Dedekind [2] in the late 19th
century.
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point, then with two, then with three, and further on with more and
more decimal places.

The result of this infinite process is an infinite decimal fraction.
It cannot be written, of course, on a page since the number of dec-
imal places is infinite. Nevertheless, an infinite decimal fraction is
considered known when a rule which determines any finite number
of its decimal signs is known.

Thus, the length of a segment incommensurable wit/i the unit of
length is expressed by an infinite decimal fraction 'whose finite parts
express lengths of segments commensurable with the unit and approx-
imating the given segment with the errors that become consecutively
smaller than 1/10th part of the unit, 1/100th, 1/1000th, and so on.

152. Remarks. (1) The same infinite decimal fraction can be ob-
tained by using approximations to the irrational number from above
rather than from below. Indeed, two approximations taken with the
same precision, one from above, the other from below, differ only
in the rightmost decimal place. When the precision improves, the
rightmost place moves farther and farther to the right, thus leaving
behind the same sequence of tlecimal signs in both fractions.

(2) The same method of decimal approximations applies to a seg-
ment commensurable with the unit of length. The result will be the
rational number, expressing the length of the segment and repre-
sented as an (infinite) decimal fraction. Tt is not hard to show that
the decimal fraction representing a rational number is repeating,
i.e. it contains a finite sequence of decimal signs which begins to re-
peat again and again starting from some decimal place and going all
the way to the right. Conversely, every repeating decimal fraction,
as it is not hard to see, represents a rational number. Therefore the
decimal fraction representing an irrational number (e.g. the length
of any segment incommensurable with the unit) is non-repeating.
For example, the decimal fraction

ñ= 1.4142...

is non-repeating, since the number as it is well known, is irra-
tional.

(3) Rational and irrational numbers are called real numbers.
Thus, infinite decimal fractions, repeating and non-repeating, repre-
sent (positive) real numbers.

153. The number line. The correspondence between segments
and real numbers expressing their lengths allows one to represent
real numbers as points on a straight line. Consider a ray OA (Figure
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165) and mark on it a point B such that the segment OB is congru-
ent to the unit of length. Every point C on the ray determines the
segment OC whose length with respect to the unit OB is expressed
by a positive real number c. One says that the point C represents
the number c on the number line. Conversely, given a positive real
number, say its finite decimal approximations 1.4, 1.41, 1.414,
etc. are lengths of certain segments O.D1, 0D2, O.D3, etc. com-
mensurable with the unit. The infinite sequence of such segments
approximates from below a certain segment OD. One says that the
number in this example) is represented by the point P on the
number line.

In particular, the point B represents the number 1, and the point
0 the number 0.

Now we extend the ray OA to the whole straight line. Then
the point C' on the ray OA' (Figure 165), symmetric with respect
to the center 0 to a point C on the ray OA, is said to represent
the negative real number —c, i.e. the opposite to that positive
number which is represented by the symmetric point C.

Thus, all real numbers: positive, zero, or negative, are repre-
sented by points on the number line, conversely, picking on any
straight line any two points 0 and B to represent the numbers 0 and
1 respectively, we establish a correspondence between all points of
the line and all real numbers.

C' 0 9 D C
N - 1-

-c 0 c

Figure 165

154. Ratio of two segments. The ratio of one line segment
to another is defined as the positive real number which expresses
the length of the first segment when the second one is taken for the
unit of length. For example, if two segments a and e are such that
a = 2.lc, i.e. if the segment a, measured by the unit c, has the length
2.1, then 2.1 is the ratio of a to c.

If both segments a and c are measured by the same unit 5, then
the ratio of a to c can be obtained by dividing the number expressing
the length of a by the number expressing the length of c. For instance,
if the lengths of a and c turned out to be 7/2 and 5/3, we can write:
a = b and c = Taking then c for the unit, we find that S =
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and respectively

7
7(3S\ (7 (7 5S\

a the of a measured
by the unit c, is equal to the quotient : = = = 2.1.

The ratio of two segments is usually denoted as a : e or Due
to the property of the ratio described above, the letters a and e in
these formulas can also be understood as numbers measuring the
corresponding segments by the same unit b.

155. Proportions. A proportion expresses equality of two ra-
tios. For instance, if it is known that the ratio a: 5 of two segments
is equal to the ratio a' : b' of two other segments, then this fact can
be expressed as a proportion: a: b = a' :

b —

In this case we will also say that the two pairs of segments: a and b,
and a' and U, are proportional to each other.

When such pairs of segments are proportional, i.e. a: 5 = a' :

then a : a' = 5 : i.e. the pairs a and and 5 and 5' (obtained
from the original ones by transposing the mean terms 5 and a') are
proportional too.

Indeed, replacing the four segments with numbers that express
their lengths measured with the same unit, we see that each of the
resulting numerical proportions:

a a' a S

expresses the same equality between products of the numbers:

a x 5' = a' x 5.

EXERCISES

329. If the full angle is taken for the unit of angular measure, find
the measures of the angles containing 10, 1', 1".
330. Prove that if a: S = a' : 5', then (a + a') : (S + 5') = a: S.

331. Prove that if a: a' = 5: 5' = c: c', then (a+b) : c= (a'+b') : c'.



2. Similarity of triangles 127

332. Prove that if one side of a triangle is a common measure of the
other two sides then the triangle is isosceles.
333. Prove that the perimeter and midline of a trapezoid circum-
scribed about a circle are commensurable.
334. Prove that the perimeter of an inscribed equilateral hexagon
and the diameter of its circumscribed circle are commensurable.
335. In a triangle, find the greatest common measure of two seg-
ments: one bet\veen the orthocenter and barycenter, the other be-
tween the orthocenter and circumcenter.
336. Prove that the greatest common measure of two segments con-
tains every their common measure a whole number of times.
Hint: All remainders in the Euclidean algorithm do.
337. Suppose that two given arcs on a given circle have the greatest
common measure a. Show how to construct the arc a using only a
compass. Consider the example \vhere one of the given arcs contains
19°, and the other 3600.
338. Find the greatest common measure of two segments:
(a) one 1001 units long, the other 1105 units long;
(b) one 11, 111, the other 1, 111, 111 units long.

339. Prove that the numbers \/g are irrational.
340. Compute with the precision of up to 0.0001.
341. Write 1/3, 1/5, 1/7, 1/17 as (finite or infinite) decimal fractions.
342.* Prove that a rational number rn/n is represented by a finite
or repeating decimal fraction. Conversely, prove that a finite or re-
peating decimal fraction represents a rational number.
343. An acute angle of a parallelogram contains 60°, and its obtuse
angle is divided by the diagonal in the proportion 3 : 1. Find the
ratio of the sides of the parallelogram.
344.* Prove that the base of an isosceles triangle, whose angle at the
vertex contains 36°, is incommensurable to the lateral side.
Hint: Draw the bisector from a vertex at the base, and compute
angles of the two triangles thus formed.

2 Similarity of triangles

156. Preliminary remarks. In everyday life, we often en-
counter figures which have different sizes, but the same shape. Such
figures are usually called similar. Thus, the same photographic pic-
ture printed in different sizes, or schemes of a building, or maps
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of a town, produced in different scales, provide examples of similar
figures. Our concept of length of segments allows us to define pre-
cisely the concept of geometric similarity of figures and to describe
ways of changing sizes of figures while preserving their shapes. Such
changes of the size of a figure without changing its shape are called
similarity transformations.

We begin our study of similar figures with the simplest case,
namely similar triangles.

157. Homologous sides. We will need to consider triangles or
polygons such that angles of one of them are respectively congruent to
the angles of another. Let us agree to call homologous those sides of
such triangles or polygons which are adjacent to the congruent angles
(in triangles, such sides are also opposite to the congruent angles).

158. Definition. Two triangles are called similar, if: (1) the
angles of one are respectively congruent to the angles of the other,
and (2) the sides of one are proportional to the homologous sides of
the other. Existence of such triangles is established by the following
lemma. 2

159. Lemma. A line (DE, Figure 166), parallel to any side
(AC) of a given triangle (ABC), cuts off a triangle (DBE),
similar to the given one.

In a triangle ABC, let the line DE be parallel to the side AC. It
is required to prove that the triangles DBE and ABC are similar.
We will have to prove that (1) their angles are respectively congruent,
and (2) their homologous sides are proportional.

(1) The angles of these triangles are respectively congruent, be-
cause LB is their common angle, and LD = LA and LE = LC
as corresponding angles between parallel lines (DE and AC), and a
transversal (AB or CB respectively).

(2) Let us now prove that the sides of ADBE are proportional
to the homologous sides of AABC, i.e. that

BDBEDE
BA - BC - AC

For this, consider the following two cases.
(i) The sides AB and DB have a common measure. Divide the

side AB into parts congruent to this common measure. Then DB
will he divided into a whole number of such parts. Let the number of

2An auxiliary theorem introduced in order to facilitate the proof of another
theorem which follows it is called a lemma.
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such parts be m in DB and n in AB. From the division points, draw
the set of lines parallel to AC, and another set of lines parallel to
BC. Then BE and BC will be divided into congruent parts
namely in in BE and n in BC. Likewise, DE will be divided into in
congruent parts, and AC into n congruent parts, and moreover the
parts of DE will be congruent to the parts of AC (as opposite sides
of parallelograms). It becomes obvious now that

BD in BE in DE in
BAn' BCn'

AC
Figure 166 Figure 167

(ii) The sides AB and DB do not have a common measure (Fig-
ure 167). Approximate the values of each of the ratios BD : BA
and BE : BC with the precision of up to 1/n. For this, divide the
side AB into n congruent parts, and through the division points,
draw the set of lines parallel to AC. Then the side BC will also be
divided into n congruent parts. Suppose that the *th part of AB
is contained in times in DB with a remainder smaller than
Then, as it is seen from Figure 167, the *th part of BC is contained
in BE also in times with a remainder smaller than *BC. Similarly,
drawing the set of lines parallel to BC, we find that the *th part of
AC is contained in DE also in times with a remainder smaller than
one such part. Therefore, with the precision of up to we have

BD mBE mDE in

where we use the symbol to express the approximate equality of
numbers, which holds true within a required precision.
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Taking first n = 10, then 100, then 1000, and so on, we find
that the approximate values of the ratios computed with the same
but arbitrary decimal precision, are equal to each other. Therefore
the values of these ratios are expressed by the same infinite decimal
fraction, and hence ED : BA = BE: BC = DE : AC.

160. Remarks. (1) The proven equalities can be written as the
following three proportions:

ED BE BE DE DE ED
BA BC' BC AC'

!ftansposing the mean terms we obtain:

ED BA BE BCDE AC
BE BC' DEAC' BDBA

Thus, if the sides of two triangles are proportional, then the ratio of
any two sides of one triangle is equal to the ratio of the homologous
sides of the other.

(2) Similarity of figures is sometimes indicated by the sign
161. Three similarity tests for triangles.

Theorems. If in two triangles,

(1) two angles of one triangle are respectively congruent

to two angles of the other, or

(2) two sides of one triangle are proportional to two sides

of the other, and the angles between these sides are congru-
ent, or

(3) if three sides of one triangle are proportional to three
sides of the other,
then such triangles are similar.

(1) Let ABC and A'B'C' (Figure 168) he two triangles such that
LA = LA', LB = LBç and therefore LC = It is required to

prove that these triangles are similar.
Mark on AB the segment ED congruent to A'B', and draw

DEIIAC. Then we obtain auxiliary ADBE, which according to

the lemma, is similar to AABC. On the other hand, ADBE is
congruent to ISA'B'C' by the ASA-test, because ED = A'B' (by
construction), LB = LB' (by hypotheses), and LD = LA' (since
LD = LA and LA = LA'). Clearly, if one of two congruent triangles
is similar to another one, then the second one is also similar to it.
Therefore AA'B'C' AABC.
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(2) Let ABC and A'B'C' (Figure 169) be two triangles such that

LB = LW, and A'S' : AB = B'C' : BC. It is required to prove that
these triangles are similar.

As before, mark on AB the segment BE? congruent to A'Bç and
draw DEIIAC. Then we obtain auxiliary ADBE similar to
Let us prove that it is congruent to AA'B'C'. From the similar-
ity of and AABC, it follows that DB : AS = BE: BC.

Comparing this proportion with the given one, we note that the first
ratios of both proportions coincide (since JiB = A'S'), and hence
the remaining ratios of these proportions are equal too. We see
that B'C' : BC = BE : BC, i.e. that the segment B'C' and BE
have equal length when measured by the same unit BC, and hence
B'C' = BE. We conclude now that the triangles DBE and A'B'C'
are congruent by the SAS-test, because they have congruent angles
LB and LB' between respectively congruent sides. But JiBE is

similar to and therefore AA'B'C' is also similar to LIABC.

B

Figure 168 Figure 169

(3) Let ABC and A'B'C' (Figure 169) be two triangles such that
A'S' : AS = B'C' : BC = A'C' : AC. It is required to prove that
these triangles are similar.

Repeating the same construction as before, let us show that
and are congruent. From the similarity of the tri-

angles JiBE and ABC, it follows that JiB : AS = BE: BC = DE:
AC. Comparing this series of ratios with the given one, we notice
that the first ratios in both series are the same, and therefore all other
ratios are also equal to each other. From B'C' : BC = BE : BC,
we conclude that B'C' = BE, and from A'C' : AC = DE : AC that
A'C' = DE. We see now that the triangles JiBE and A'B'C' are
congruent by the SSS-test, and since the first one of them is similar
to then the second one is also similar to

162. Remarks (1) We would like to emphasize that the method
applied in the proofs of the previous three theorems is the same.
Namely, marking on a side of the greater triangle the segment con-
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gruent to the homologous side of the smaller triangle, and drawing
the line parallel to another side, we form an auxiliary triangle similar
to the greater given one. Then we apply the corresponding congru-
ence test for triangles and derive from the hypotheses of the theorem
and the similarity property that the auxiliary triangle is congruent
to the smaller given one. Finally the conclusion about similarity of
the given triangles is made.

(2) The three similarity tests are sometimes called the AAA-
test, the and 555-test respectively.

163. Similarity tests for right triangles. Since every two
right angles are congruent, the following theorems follow directly
from the AAA-test and SAS-test of similarity for general triangles
and thus do not require separate proofs:

If in two right triangles,
(1) an acute angle of one is congruent to an acute angle of the

other, or
(2) legs of one are proportional to the legs of the other,

then such right triangles are sjmilar.
The following test does require a separate proof.
Theorem. If the hypotenuse and a leg of one right triangle

are proportional to the hypotenuse and a leg of another one,
then such triangles are similar.

Let ABC and A'B'C' be two triangles (Figure 170) such that
the angles B and B' are right, and A'B' : AB = A'C' : AC. It is
required to prove that these triangles are similar.

/
Figure 170 Figure 171

We apply the method used before. On the segment AB, mark
BD = A'B' and draw DEIIAC. Then we obtain the auxiliary tri-
angle EsDBE similar to AABC. Let us prove that it is congru-
ent to AA'B'C'. From the similarity of the triangles DBE and
ABC, it follows that DB : AB = DE : AC. Comparing with
the given proportion, we find that the first ratios in both propor-
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tions are the same, and therefore the second ratios are equal too,
Le. DE : AC = A'C' : AC, which shows that DE = A'C'. We see
now that in the right triangles DEE and A'B'Cç the hypotenuses
and one of the legs are respectively congruent. Thus the triangles
are congruent, and since one of them is similar to L\ABC, then the
other one is also similar to it.

164. Theorem. In similar triangles, homologous sides are
proportional to homologous altitudes, i.e. to those altitudes
which are dropped to the homologous sides.

Indeed, if triangles ABC and A'B'C' (Figure 171) are similar,
then the right triangles BAD and B'A'D' are also similar (since
LA = LA'), and therefore

EDAB BC_AC
B'D' A'B' - B'C'

EXERCISES

Prove theorems:

345. All equilateral triangles are similar.
346. All isosceles right triangles are similar.
347. Two isosceles triangles are similar if and only if their angles at
the vertex are congruent.
348. In similar triangles, homologous sides are proportional to:
(a) homologous medians (i.e. those medians which bisect homol-
ogous sides), and (b) homologous bisectors (i.e. the bisectors of
respectively congruent angles).
349. Every segment parallel to the base of a triangle and connecting
the other two sides is bisected by the median drawn from the vertex.
350. The line drawn through the midpoints of the bases of a trape-
zoid, passes through the intersection point of the other two sides,
and through the intersection point of the diagonals.
351. A right triangle is divided by the altitude drawn to the hy-
potenuse into two triangles similar to it.
352. If a line divides a triangle into two similar triangles then these
similar triangles are right.
353. Given three lines passing through the same point. If a point
moves along one of the lines, then the ratio of the distances from this
point to the other two lines remains fixed.
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354. The line connecting the feet of two altitudes of any triangle
cuts off a triangle similar to it. Derive from this that altitudes of
any triangle are angle bisectors in another triangle, whose vertices
are the feet of these altitudes.

If a median of a triangle cuts off a triangle similar to it, then
the ratio of the homologous sides of these triangles is irrational.
Hint: Find this ratio.

Computation problems

356. In a trapezoid, the line parallel to the bases and passing through
the intersection point of the diagonals is drawn. Compute the length
of this line inside the trapezoid, if the bases are a units and b units
long.
357. In a triangle ABC with sides a, b, and c units long, a line MN
parallel to the side AC is drawn, cutting on the other two sides the
segments AM = BN. Find the length of MN.
358. Into a right triangle with legs a and b units long, a square is
inscribed in such a way that one of its angles is the right angle of the
triangle, and the vertices of square lie on the sides of the triangle.
Find the perimeter of the square.
359. Two circles of radii R and r respectively are tangent externally
at a point fri. Compute the distance from Al to the common external
tangents of the circles.

3 Similarity of polygons

165. Definition. Two polygons with the same number of sides
are called similar, if angles of one of them are respectively congru-
ent to the angles of the other, and the homologous sides of these
polygons are proportional. Thus, the polygon ABCDE is similar to
the polygon A'B'C'D'E' (Figure 172), if

ZA=ZA', ZB=ZB', ZC=ZC', ZD=ZD', ZE=ZE',
and ABBCCDDEEA

A'B' B'C' CT' D'E' —
Existence of such polygons is seen from the solution of the following
problem.

166. Problem. Given a polygon ABCDE, and a segment a,
coiistruct another polygon similar to the given one and such that its
side homologous to the side AB is congruent to a (Figure 173).
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Here is a simple way to do this. On the side AB, mark AB' = a (if
a> AB, then the point B' lies on the extension of AB). Then draw
all diagonals from the vertex A, and construct C'D'IICD
and D'E'IIDE. Then we obtain the polygon AB'C'D'E' similar to
the polygon ABCDE.

C

B
D

Indeed, firstly, the angles of one of them are congruent to the an-
gles of the other: the angle A is common; LB' = LB and LE' = LB
as corresponding angles between parallel lines and a transversal;
LC' = LC and LD' = LD, since these angles consist of parts respec-
tively congruent to each other. Secondly, from similarity of triangles,
we have the following proportions:

from AAB'C' AABC: = =

from AAC'D' AACD:
=

=

from AAD'FY = =

Since the third ratio of the first row coincides with the first ratio of
the second row, and the third ratio of the second row coincides with
the first ratio of the third row, we conclude that all nine ratios are
equal to each other. Discarding those of the ratios which involve the
diagonals, we can write:

AB' — B'C' - C'D' AE'
ABBCCDDEAE

We see therefore that in the polygons ABCDE and
which have the same number of vertices, the angles are respectively

C

Figure 172 Figure 173
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congruent, and the homologous sides are proportional. Thus these
polygons are similar.

167. Remark. For triangles, as we have seen in § 161, congruence
of their angles implies proportionality of their sides, and conversely,
proportionality of the sides implies congruence of the angles. As a
result, congruence of angles alone, or proportionality of sides alone
is a sufficient test of similarity of triangles. For polygons however,
congruence of angles alone, or proportionality of sides alone is in-
sufficient to claim similarity. For example, a square and a rectangle
have congruent angles, but non-proportional sides, and a square and
a rhombus have proportional sides, but non-congruent angles.

168. Theorem. Similar polygons can be partitioned into
an equal number of respectively similar triangles positionedin the same way.

For instance, similar polygons ABCDE and AB'C'D'E' (Figure
173) are divided by the diagonals into similar triangles which are
positioned in the same way. Obviously, this method applies to every
convex polygon. Let us point out another way which also works for
convex polygons.

Inside the polygon ABCDE (Figure 172), take any point 0 and
connect it to all the vertices. Then the polygon ABCDE will be
partitioned into as many triangles as it has sides. Pick one of them,
say, IiIAOE (it is shaded on the Figure 172), and on the homolo-
gous side A'E' of the other polygon, construct the angles O'A'E'
and O'E'A' respectively congruent to the angles OAE and OEA.
Connect the intersection point 0' with the remaining vertices of the
polygon A'B'C'D'E'. Then this polygon will be partitioned into the
same number of triangles. Let us prove that the triangles of the first
polygon are respectively similar to the triangles of the second one.

Indeed, is similar to AA'O'E' by construction. To prove
similarity of the adjacent triangles AOB and we take into
account that similarity of the polygons implies that

BA AEZBAE=ZBAE,

and similarity of the triangles AGE and A'O'E' implies that
A0 AEZOAE=ZOAE, and

It follows that

BA AGZBAO=ZBAO,
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We see that the triangles AOB and A'O'B' have congruent angles
contained between two proportional sides, and are therefore similar.

In exactly the same way, we then prove similarity of and

then of and etc. Obviously, the similar
triangles are positioned in their respective polygons in the same way.

In order to prove the theorem for non-convex polygons, it suffices
to partition them in the same way into convex ones, by the method
explained in §82 (see Remark (2)).

169. Theorem. Perimeters of similar polygons are pro-
portional to homologous sides.

Indeed, if polygons A.BCDE and A'B'C'D'E' (Figure 172) are
similar, then by definition

AD BC CD DE EA

A'D' = .B'C' = C'D' = D'E' = E'A'
= Ic,

where k is some real number. This means that AD =
BC = k(B'C'), etc. Adding up, we find

AB+.BC+CD+DE+ EA = k(A'B' +.B'C'+C'D' +D'E'+E'A'),

and hence

AB+BC+CD+DE+EA -k
A'B'+B'C'+C'D'+D'E'+E'AJ

Remark. This is a general property of proportions: giVen a row
of equal ratios, the sum of the first terms of the ratios are to the sum
of the second terms, as each of the first terms is to the corresponding
second term.

EXERCISES

360. Prove that all squares are similar.
361. Prove that two rectangles are similar if and only if they have
equal ratios of non-parallel sides.
362. Prove that two rhombi are similar if and only if they have
congruent angles.
363. How does the previous result change if the rhombi are replaced
by arbitrary equilateral polygons?
364. Prove that two kites are similar if and only if the angles of one
of them are respectively congruent to the angles of the other.
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365. Prove that two inscribed quadrilaterals with perpendicular di-
agonals are similar if and only if they have respectively congruent
angles.

366.* How does the previous result change, if the diagonals of the
inscribed quadrilaterals form congruent angles, other than d?
367. Prove that two circumscribed quadrilaterals are similar if and
only if the angles of one of them are respectively congruent to the
angles of the other.
368. How does the previous result change if quadrilaterals are re-
placed by arbitrary polygons?
369. Two quadrilaterals are cut into two congruent equilateral tri-
angles each. Prove that the quadrilaterals are similar.
370. How does the previous result change if the equilateral triangles
are replaced with right isosceles triangles?

4 Proportionality theorems

170. Thales' theorem. The following result was known to the
Greek philosopher Thales of Miletus (624 B.C. — 547 B.C.)

Theorem. The sides of an angle (ABC, Figure 174) inter-
sected by a series of parallel lines (DD', EE', FF', ...) are
divided by them into proportional parts.

B D' E' P A

c\D\

Figure 174 Figure 175

It is required to prove that

BD DE EF
BD'D'E'E'F'"'

C
F

D
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or, equivalently, that

ED BD' DE D'E'
DE D'E" EF =

Draw the auxiliary lines Dill, EN, ..., parallel to BA. We obtain
the triangles BDD', DEM, EFN, ..., which are all similar to each
other, since their angles are respectively congruent (due to the prop-
erty of parallel lines intersected by a transversal). It follows from the
similarity that

BD DE EF

Replacing in this sequence of equal ratios the segments: Dill with
D'Eç EN with E'Fç ..., (congruent to them as opposite sides of
parallelograms), we obtain what was required to prove.

171. Theorem. Two parallel lines (il/IN and M'Nç Figure
175) intersected by a series of lines (GA, GB, OC, ...), drawn
from the same point (0), are divided by these lines into pro-
portional parts.

It is required to prove that the segments AB, BC, CD, ... of
the line MN are proportional to the segments B'Cç
of the line M'N'.

From the similarity of triangles (fl59): GAB OA'B' and
0BC 0B'C', we derive:

ABBO BO BC

and conclude that AB : A'B' = BC' : B'C'. The proportionality of
the other segments is proved similarly.

172. Problem. To divide a line segment AB (Figure 176) into
three parts in proportion in : n : p, where in, n, and p are given
segments or given whole numbers.

Issue a ray AC making an arbitrary angle with AB, and mark on
it, starting from the point A, the segments congruent to the given
segments in, n, and p. Connect the endpoint F of the segment p with
B, and through the endpoints C and H of the marked segments, draw
the lines GD and HE parallel to FB. Then the segment AB will be
divided by the points D and E in the proportion in : n : p.

When in, n, and p denote given whole numbers, e.g. 2,5, 3, then
the construction is performed similarly, except that the segments
marked on AC are to have lengths 2, 5, and 3 in the same arbitrary
units.
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The described construction applies, of course, to division of seg-
rnents into any number of parts.

173. Problem. Given three segments a, b, and c, find a fourth
segment to form a proportion (Figure 177), i.e. find a segment x such
that a: b = c : x.

On the sides of an arbitrary angle ABC, mark the segments
BD = a, BF = b, DE = c. Connect D and F, and construct
ECIIDF. The required segment is FC.

- m a
- 'I b

p C

________A

Figure 177

174. A property of bisectors.

Theorem. The bisector (BD, Figure 178) of any angle of a
triangle (ABC) divides the opposite side into parts (AD and
DC) proportional to the adjacent sides.

It is required to prove that if ZABD = ZDBC, then

ADAB

Draw CE parallel to BD up to the intersection at a point E with
the extension of the side AB. Then, according to Thales' theorem
(fl70), we will have the proportion AD : DC = AB: BE. To derive
from this the required proportion, it suffices to show that BE = BC,
i.e. that is isosceles. In this triangle, LE = LABD and
LBCE = ZDBC (respectively as corresponding and as alternate
angles formed by a transversal with parallel lines). But ZABD =
ZDBC by the hypothesis, hence ZE = ZBCE, and therefore BC
and BE are congruent as the sides opposite to congruent angles.

Figure 176
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Example. Let AB = 30, BC = 24, and AC = 36 era. We can
denote AD by the letter x and write the proportion:

x 30 . x 5

36—x24' i.e. 36—x4'
We find therefore: 4x = 180 — 5x, or 9x = 180, i.e. x = 20. Thus
AD=20 cm, and DC=36—x=16 cm.

175. Theorem. The bisector (BD, Figure 179) of an exterior
angle (CBF) at the vertex of a triangle (ABC) intersects the
extension of the base (AC) at a point (D) such that the dis-
tances (DA and DC) from this point to the endpoints of the
base are proportional to the lateral sides (AR and BC) of the
triangle.

F

D

Figure 179

In other words, it is required to prove that if ZCBD = ZFBD,
then

DA AB

Drawing CEllED, we can write the proportion: DA : DC =
BA : BE. Since ZBEC = ZFBD and ZBCE = ZCBD (respec-
tively as corresponding and as alternate angles formed by parallel
lines with a transversal), and ZFBD = ZCBD by the hypothe-

sis, we have ZBEC = ZBCE. Therefore LIEBC is isosceles, i.e.

BE = BC. Replacing, in the proportion we already have, the seg-
ment BC with the congruent segment BE, we obtain the required
proportion: DA: DC = BA: BC.

Remark. The bisector of the exterior angle at the vertex of an
isosceles triangle is parallel to the base. This is an exceptional case
in the formulation of the theorem and in its proof.

B

Figure 178

A C
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EXERCISES

371. Prove that if proportional segments are marked on the sides
of an angle starting from the vertex, then the lines connecting their
endpoints are parallel.
372. Construct a line segment connecting lateral sides of a given
trapezoid and parallel to its bases, such that it is divided by the
diagonals into three congruent parts.
373. Construct a triangle, given the angle at the vertex, the base,
and its ratio to one of the lateral sides.
374. Prove that the bisector of the angle between two non-congruent
sides of a triangle is smaller than the median drawn from the same
vertex.
375. In a triangle with sides 12, 15, and 18 cm, a circle is drawn
tangent to both smaller sides and with the center lying on the greatest
side. Find the segments into which the center divides the greatest
side.

376. Through a given point the bisector of a given angle, draw a
line whose part inside the angle is divided by the point in the given
proportion m : ii.

377. Construct a triangle, given the angle at the vertex, the base,
and the point on the base where it meets the angle bisector.
378. Into a given circle, inscribe a triangle, given its base and the
ratio of the other two sides.

Construct a triangle, given two of its sides and the bisector of
the angle between them.
Hint: Examine Figure 178, and construct first.
380.* In /iSABC, the side AC = 6 cm, BC = 4 cm, and LB = 2LA.
Compute AB.
Hint: See Example in §174.
381. Given two points A and B on an infinite line, find a third point
C on this line, such that CA : CB = m: n, where 772 and n are given
segments or given numbers. (If in n there are two such points:
one between A and B, the other outside the segment AB.)
382.* Given two points A and B, find the geometric locus of points
NI such that MA and MB have a given ratio rn : n.
Hint: The answer is often called Apollonius' circle after the Greek
geometer Apollonius of Perga (262 — 190 B.C.)
383.* Into a given circle, inscribe a triangle, given its base, and the
ratio of the median, bisecting the base, to one of the lateral sides.
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5 Homothety

176. Homothetic figures. Suppose we are given (see Figure
180): a figure 1, a point 5, which we will call the center of homo-
thety, and a positive number Ic, which we will call the similarity
coefficient (or homothety coefficient). Take an arbitrary point A
in the figure and draw through it the ray SA drawn from the center
5. Find on this ray the point A' such that the ratio SA': SA is equal
to Ic. Thus, if K < 1, e.g. Ic = 1/2, then the point A' lies between S
and A (as in Figure 180), and if Ic> 1, e.g. Ic = 3/2, then the point
A' lies beyond the segment SA. Take another point B of the figure

and repeat the same construction as we explained for A, i.e. on
the ray SB, find the point B' such that SB' : SB = Ic. Imagine now
that, keeping the point S and the number Ic unchanged, we find for
every point of the figure 4 the corresponding new point obtained by
the same construction. Then the geometric locus of all such points is
a new figure V. The resulting figure t' is called homothetic to the
figure 4 with respect to the center S and with the given coefficient Ic.
The transformation of the figure into is called a homothety,
or similarity transformation, with the center S and coefficient Ic.

177. Theorem. A figure homothetic to a line segment (AB,
Figure 181) is a line segment (A'B'), parallel to the first one
and such that the ratio of this segment to the first one is
equal to the homothety coefficient.

Find points A' and B' homothetic to the endpoints A and B of
the first segment with respect to the given center S and with the
given homothety coefficient Ic. The points A' and B' lie on the rays
SA and SB respectively, and BA' : BA = Ic = SB' : SB. Connect
A' with B' and prove that A'B'IIAB, and A'B' : AB = Ic. Indeed,

AASB since they have the common angle 5, and their

A A

A

Figure 180 Figure 181
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sides containing this angle are proportional. From the similarity of
these triangles, it follows that A'.B' : AB = SA' : BA = k, and that
LBAS = LB'A'S, and hence that A'B'IIAB.

Let us prove now that the segment A'B' is the figure homothetic
to AR For this, pick any point Al on AB and draw the ray SM. Let
lvi' be the point where this ray intersects the line A'B'. The triangles
M'A'S and MAS are similar because the angles of one of them are
congruent to the angles of the other. Therefore BA' SM = BA'
BA = k, i.e. lvi' is the point hornothetic to lvi with respect to the
center S and with the coefficient k. Thus, for any point on AB, the
point homothetic to it lies on A'B'. Vice versa, picking any point
lvi' on A'B' and intersecting the ray SAil' with AB, we similarly find
that Al' is homothetic to lvi. Thus the segment A'B' is the figure
homothetic to AB.

Remark. Note that the segment A'B' with the endpoints respec-
tively homothetic to the endpoints of the segment AB, is not only
parallel to AB, but also has the same direction (indicated in Figure
181 by arrows).

178. Theorem. The figure homothetic to a polygon (ABCD,
Figure 182) is a polygon (A'B'C'D') similar to the first one,
and such that its sides are parallel to the homologous sides
of the first polygon, and the ratio of the homologous sides
is equal to the homothety coefficient (k).

Indeed, according to the previous theorem, the figure hornothetic
to a polygon ABCD is formed by the segments parallel to its sides,
directed the same way, and proportional to them with the propor-
tionality coefficient k. Therefore the figure is a polygon A'B'C'D',
whose angles are respectively congruent to the angles of ABCD (as

B

A

S

Figure 182 Figure 183
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angles with parallel respective sides, §79), and whose homologous
sides are proportional to the sides of ABCD. Thus these polygons
are similar.

Remark. One can define similarity of arbitrary geometric figures
as follows: two figures are called similar if one of them is congruent
to a figure homothetic to the other. Thus, homothetic figures are
similar in this sense. The theorem shows that our earlier definition
of similar polygons agrees with the general definition of similar
figures.

179. Theorem. The figure hornothetic to a circle (centered
at 0, Figure 183), is a circle such that the ratio of its radius
to the radius of the first circle is equal to the hornothety
coefficient, and whose center (0') is the point hoinothetic to
the center of the first circle.

Let S be the center of homothety, and k the coefficient. Pick an
arbitrary radius OA of the given circle and construct the segment
O'A' homothetic to it. Then O'A' : OA = k by the result of §177,
i.e. O'A' = k OA. When the radius OA rotates about the center
0, the length of the segments O'A' remains therefore constant, and
the point 0' homothetic to the fixed point 0, remains fixed. Thus
the point A' describes the circle with the center 0' and the radius
congruent to k times the radius of the given circle.

4-i

Figure 184

180. Negative homothety coefficients. Suppose we are given
a figure a point 5, and a positive number k. We can alter the
construction of the figure homothetic to in the following fashion.
Pick a point A (Figure 184) of the figure issue from S the ray
SA, and extend it beyond the point S. On the extension of this ray,
mark the point A' such that SA' : SA = k. When this construction
is repeated (keeping S and Ic the same) for all points A of the figure

the locus of the corresponding points A' is a new figure 1'. The
figure 4' is also considered homothetic to the figure 4 with respect
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to the center 8, but with the negative homothety coefficient equal
to —k.

We suggest that the reader verifies the following facts about ho-
motheties with negative coefficients:
(1) The figure hoinothetic with a negative coefficient —k to a line
segment AB (Figure 184) is a line segment A'B' parallel to AB,
congruent to k AB, and having the direction opposite to the direction
of AB.
(2) The similarity transformation with the center S and coefficient
—1 is the same as the central symmetry about the center S.
(3) Two figures, homothetic to a given figure about a center S and
with coefficients k and —k respectively, are centrally symmetric to
each other about the center S.
(4) On the number line the points representing the numbers k
and —k are homothetic to the point representing the number 1 with
respect to the center 0, and with the homothety coefficients equal to
k and —k respectively.

181. The method of homothety. This method can be suc-
cessfully applied to solving many construction problems. The idea
is to construct first a figure similar to the required one, and then to
obtain the required figure by means of a similarity transformation.
The homothety method is particularly convenient when only one of
the given quantities is a length, and all others are angles or ratios,
such as in the problems: to construct a triangle, given its angle, side,
and the ratio of the other two sides, or given two angles and a cer-
tain segment (an altitude, median, angle bisector, etc.); to construct
a square, given the sum or the difference of its side and the diagonal.
Let us solve, for example, the following problem.

Problem 1. To construct a triangle ABC, given the angle C,
the ratio of its sides AC: BC, and the altitude h, dropped from the
vertex of this angle to the opposite side (Figure 185).

Let AC: BC = in : n, where in and n are two given segments
or two given numbers. Construct the angle C, and on its sides,
mark the segments CA' and CE', proportional to in and n. When
in and n are segments, we may take CA' = in and CB' = n. If in
and n are whole numbers, then picking an arbitrary segment I, we
may construct CA' = ml and CB' = nI. In both cases, we have
CA' : CB' = in: n.

The triangle A'B'C is, evidently, similar to the required one.
To obtain the required triangle, construct the altitude CD' of the
triangle A'B'C and denote it M Now pick an arbitrary homothety
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center and construct the triangle homothetic to the triangle A'B'C
with the homothety coefficient equal to h/h'. The resulting triangle
will be the required one.

It is most convenient to pick the center at the point C. Then
the construction becomes especially simple (Figure 185). Extend
the altitude CD' of the triangle A'B'C, mark on it the segment CD
congruent to h, and draw through its endpoint D the line AB parallel
to A'B'. The triangle ABC is the required one.

The position of the required figure in problems of this kind re-
mains arbitrary. In some other problems, it is required to construct
a figure in a quite definite position with respect to given points and
lines. It can happen, that discarding one of these requirements, we
obtain infinitely many solutions similar to the required figure. Then
the method of homothety becomes useful. Here are some examples.

Figure 185

182. Problem 2. Into a given angle ABC, to inscribe a circle
that would pass through a given point Al (Figure 186).

Discard temporarily the requirement for the circle to pass through
the point Al. The remaining condition is satisfied by infinitely many
circles whose centers lie on the bisector BD of the given angle. Con-
struct one such circle, e.g. the one with the center at some point o.
Take on it the point in homothetic with respect to the center B to
the point Al, i.e. lying on the ray and draw the radius mO. If
we now construct MO limo, then the point 0 will he the center of
the required circle.

Indeed, draw the perpendiculars ON and on to the side AB. We
obtain similar triangles: MBO mBo, and NBO nBo. From
their similarity, we have: MO : mo = BO : Bo and NO : no =
BO: Bo, and therefore MO : mo = NO : no. But mo = no, and

C

A

A' B'

D

A D B C

Figure 186
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hence MO = NO, i.e. the circle described by the radius OM about
the center 0 is tangent to the side AR. Since its center lies on the
bisector of the angle, it is tangent to the side BC as well.

If instead of the point in on the auxiliary circle, the other intersec-
tion point in' of this circle with the ray BM is taken as homothetic to
lvi, then another center 0' of the required circle will be constructed.
Thus the problem admits two solutions.

183. Problem 3. Into a given triangle ABC, to inscribe a rhom-
bus with a given acute angle, in such a way that one of its sides lies
on the base AR of the triangle, and two vertices on the lateral sides
AC and BC (Figure 187).

C

B

Figure 187

Discard temporarily the requirement for one of the vertices to lie

on the side BC. Then there are infinitely many rhombi satisfying the

remaining conditions. Construct one of them. For this, take on the
side AC an arbitrary point fri and construct the angle, congruent to
the given one, with the vertex at the point M, and such that one of
its sides is parallel to the base AR and the other intersects the base
at some point N. On the side AR, mark a segment NP congruent
to MN, and construct the rhombus with the sides MN and NP.

Let Q be the fourth vertex of this rhombus. Taking A for the cen-
ter of homothety, construct the rhombus homothetic to the rhombus
MNPQ, and choose the hornothety coefficient such that the vertex
of the new rhombus corresponding to the vertex Q turns out to lie
on the side BC of the triangle. For this, extend the ray AQ up to
its intersection with the side BC at some point X. This point will
be one of the vertices of the required rhombus. Drawing through X
the lines parallel to the sides of the rhombus MNPQ, we obtain the
required rhombus XYZU.

M

x

A N Z P U



5. Hornothety 149

EXERCISES

Prove theorems:

384. If the radii of two circles rotate remaining parallel to each other,
then the lines passing through the endpoints of such radii intersect
the line of centers at a fixed point.
385. Two circles on the plane are homothetic to each other with
respect to a suitable center (even two centers, for one the homothety
coefficient is negative, and for the other positive).
Hint: The centers of homothety are the fixed intersection points
from the previous problem.

Find the geometric locus of:

386. Midpoints of all chords passing through a given point on a
circle.
387. Points dividing all chords passing through a given point on a
circle in a fixed ratio in : n.
388. Points from which the distances to the sides of a given angle
have a fixed ratio.

Construction problems

389. Through a point given in the interior of an angle, draw a line
such that its segments between the point and the sides of the angle
have a given ratio in : it.

390. About a given square, circumscribe a triangle similar to a given
one.
391. Find a point inside a triangle such that the three perpendiculars
dropped from this point to the sides of the triangle are in the given
proportion in : it : p.

392. Construct a triangle, given the angle at the vertex, the altitude,
and the ratio in which its foot divides the base.
393. Construct a triangle, given its angles, and the sum or the dif-
ference of the base and the altitude.
394. Construct an isosceles triangle, given the angle at the vertex,
and the sum of the base with the altitude.
395. Construct a triangle, given its angles and the radius of its cir-
cumscribed circle.
396. Given ZAOB and a point C in its interior. On the side OB,
find a point frI equidistant from OA and C.
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397. Construct a triangle, given the ratio of its altitude to the base,
the angle at the vertex, and the median drawn to one of its lateral
sides
398. Into a given disk segment, inscribe a square such that one of
its sides lies on the chord, and the opposite vertices on the arc.
399. Into a given triangle, inscribe a rectangle with the given ratio
of the sides in : ii, so that one of its sides lies on the base of the
triangle, and the opposite vertices on the lateral sides.

6 Geometric mean

184. Definition. The geometric mean between two segments
a and c is defined to be a third segment b such that a b = b c.
More generally, the same definition applies to any quantities of the
same denomination. When a, b, and c are positive numbers, the
relationship a : b = b : c can be rewritten as

= ac, or b =

185. Theorem. In a right triangle:
(1) the altitude dropped from the vertex of the right angle

is the geometric mean between two segments into which the
foot of the altitude divides the hypotenuse, and

(2) each leg is the geometric mean between the hypotenuse
and the segment of it which is adjacent to the leg.

Let AD (Figure 188) be the altitude dropped from the vertex of
the right angle A to the hypotenuse BC. It is required to prove the
following proportions:

BD AD BC AB BC AC

The first proportion is derived from similarity of the triangles BDA
and ADC. These triangles are similar because

Li = /4 and /2= /3

as angles with perpendicular respective sides The sides BD
and AD of form the first ratio of the required proportion.
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The homologous sides of are AD and DC, and therefore
BD:AD=AD:DC.

The second proportion is derived from similarity of the triangles
ABC and BDA. These triangles are similar because both are right,
and LB is their common acute angle. The sides BC and AB of

form the first ratio of the required proportion. The homol-
ogous sides of ABDA are AR and BD, and therefore BC: AR =
AB:BD.

The last proportion is derived in the same manner from the sim-
ilarity of the triangles ABC and ADC.

C

186. Corollary. Let A (Figure 189) be any point on a circle, de-
scribed about a diameter BC. Connecting this point by chords with
the endpoints of the diameter we obtain a right triangle such that
its hypotenuse is the diameter, and its legs are the chords. Applying
the theorem to this triangle we arrive at the following conclusion:

The perpendicular dropped from any point of a circle to its diam-
eter is the geometric mean between the segments into which the foot
of the perpendicular divides the diameter, and the chord connecting
this point with an endpoint of the diameter is the geometric mean
between the diameter and the segment of it adjacent to the chord.

187. Problem. To construct the geometric mean between two
segments a and c.

We give two solutions.
(1) On a line (Figure 190), mark segments AR = a and BC = c

next to each other, and describe a semicircle on AC as the diameter.

31n order to avoid mistakes in determining which sides of similar triangles
are homologous to each other, it is convenient to mark angles opposite to the
sides in question of one triangle, then find the angles congruent to them in the
other triangle, and then take the sides opposite to these angles. For instance, the
sides ED and AD of ABDA are opposite to the angles I and 3; these angles are
congruent to the angles 4 and 2 of AADC, which are opposite to the sides AD
and DC. Thus the sides AD and DC correspond to ED and AD respectively.

B D C B D

Figure 188 Figure 189
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From the point B, erect the perpendicular to AC up to the inter-
section point D with the semicircle. The perpendicular BD is the
required geometric mean between AB and BC.

D

A

a
B

b

Figure 190

(2) From the endpoint A of a ray (Figure 191), mark the given
segments a and b. On the greater of them, describe a semicircle.
From the endpoint of the smaller one, erect the perpendicular up to
the intersection point D with the semicircle, and connect D with A.
The chord AD is the required geometric mean between a and b.

188. The Pythagorean Theorem. The previous theorems
allow one to obtain a remarkable relationship between the sides of any
right triangle. This relationship was proved by the Greek geometer
Pythagoras of Samos (who lived from about 570 B.C.to about 475
B.C.) and is named after him.

Theorem. If the sides of a right triangle are measured
with the same unit, then the square of the length of its hy-
potenuse is equal to the sum of the squares of the lengths
of its legs.

B C

Figure 192

Let ABC (Figure 192) be a right triangle, and AD the altitude
dropped to the hypotenuse from the vertex of the right angle. Sup-
pose that the sides and the segments of the hypotenuse are measured

Figure 191
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by the same unit, and their lengths are expressed by the numbers
a, b, c, c' and b'.4 Applying the theorem of §185, we obtain the
proportions:

a: c = c: c' and a: b = b:

or equivalently:
ac' = c2 and ab' = b2.

Adding these equalities, we find:

/ 1 2 2 1 / 2 2ac+ab=c +b, or a(c+b)=c +b.
But c' + b' = a, and therefore a2 = b2 + c2.

This theorem is often stated in short: the square of the hypotenuse
equals the sum of the squares of the legs.

Example. Suppose that the legs measured with some linear unit
are expressed by the numbers 3 and 4. Then the hypotenuse is
expressed in the same units by a number x such that

x2 32+42 = 9+16 = 25, and hencex= 5.

Remark. The right triangle with the sides 3, 4, and 5 is sometimes
called Egyptian because it was known to ancient Egyptians. It is
believed they were using this triangle to construct right angles on
the land surface in the following way. A circular rope marked by 12
knots spaced equally would be stretched around three poles to form
a triangle with the sides of 3, 4, and5 spacings. Then the angle
between the sides equal to 3 and 4 would turn out to be right.

Yet another formulation of the Pythagorean theorem, namely the
one known to Pythagoras himself, will be given in §259.

189. Corollary. The squares of the legs have the same ratio as
the segments of the hypotenuse adjacent to them.

Indeed, from formulas in §188 we find c2 : b2 = ac' all = e' : b'.

Remarks. (1) The three equalities

ac' = c2, ab' = b2, a2 = b2 + c2,

41t is customary to denote sides of triangles by the lowercase letters corre-
sponding to the uppercase letters which label the opposite vertices.

5Wght triangles whose sides are measured by whole numbers are called
Pythagorean. One can prove that the legs x and y, and the hypotenuse z
of such triangles are expressed by the formulas: x = 2ab, y = a2 — b2, z = a2 + b2,
where a and b are arbitrary whole numbers snch that a> b.
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can be supplemented by two more:

b'+c'=a, and h2=b'c',

where h denotes the length of the altitude AD (Figure 192). The
third of the equalities, as we have seen, is a consequence of the first
two and of the fourth, so that only four of the five equalities are
independent. As a result, given two of the six numbers a, b, c, b', c'
and h, we can compute the remaining four. For example, suppose we
are given the segmehts of the hypotenuse b' = 5 and c' = 7. Then

a=b'+c'z=12, c=

(2) Later on we will often say: "the square of a segment" instead
of "the square of the number expressing the length of the segment,"
or "the product of segments" instead of "the product of numbers
expressing the lengths of the segments." We will assume therefore
that all segments have been measured using the same unit of length.

190. Theorem. In every triangle, the square of a side
opposite to an acute angle is equal to the sum of the squares
of the two other sides minus twice the product of (any) one
of these two sides and the segment of this side between the
vertex of the acute angle and the foot of the altitude drawn
to this side.

Let BC be the side of (Figures 193 and 194), opposite
to the acute angle A, and BD the altitude dropped to another side,
e.g. AC, (or to its extension). It is required to prove that

BC2 =AB2+AC2-2ACAD,

or, using the notation of the segments by single lowercase letters as
shown on Figures 193 or 194, that

a2 = b2 + c2 — 2k'.

From the right triangle BDC, we have:

a2 = h2 + (a')2. (*)

Let us compute each of the squares h2 and (a')2. From the right
2 9 2 ,tnangle BAD, we find: h = (c') . On the other hand, a = b—c
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(Figure 193) or a' = c' — b (Figure 194). In both cases we obtain the
same expression for (a')2:

(a')2 = (b — c')2 = (c' — b)2 = b2 — 2bc' + (c')2.

Now the equality (*) can be rewritten as

a2 = c2 (c')2 + — 2bc' + (c')2 = c2 + — 2bc'.

B

h

A C 0

191. Theorem. In an obtuse triangle, the square of the
side opposite to the obtuse angle is equal to the sum of
the squares of the other two sides plus twice the product
of (any) one of these two sides and the segment on the ex-
tension of this side between the -vertex of the obtuse angle
and the foot of the altitude drawn to this side.

Let AB he the side of AABC (Figure 194), opposite to the obtuse
angle C, and ED the altitude dropped to the extension of another
side, e.g. AC. It is required to prove that

AB2 =AC2+BC2+2AC•CD,

or, using the abbreviated notation shown in Figure 194, that

c2 = a2 + + 2ba'.

From the right triangles ABD and CBD, we find:

= + (c')2 =a2 — (a')2 + (a' + b)2 =

a2 — (a')2 + (a')2 + 2ba' + b2 = a2 + + 2ba'.

Figure 193 Figure 194
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192. Corollary. From the last three theorems, we conclude,
that the square of a side of a triangle is equal to, greater than, or
smaller than the sum of the squares of the other two sides, depending
on whether the angle opposite to this side is right, acute, or obtuse.

Furthermore, this implies the converse statement: an angle of a
triangle turns out to be right, acute or obtuse, depending on whether
the square of the opposite side is equal to, greater than, or smaller
than the sum of the squares of the other two sides.

193. Theorem. The sum of the squares of the diagonals
of a parallelogram is equal to the sum of the squares of its
sides (Figure 195). /

B C

A

From the vertices B and C of a parallelogram ABCD, drop the
perpendiculars BE and CF to the base AD. Then from the triangles
ABD and ACD, we find:

AC2=AD2+CD2+2AD.DF.

The right triangles ABE and DCF are congruent, since they have
congruent hypotenuses and congruent acute angles, and hence AE =
DF. Having noticed this, add the two equalities found earlier. The
summands —2AD AE and +2AD . DF cancel out, and we get:

BD2+AC2 = AB2+AD2+AD2+CD2= AB2+BC2+CD2+AD2.

194. We return to studying geometric means in a disk.
Theorem. If through a point (M, Figure 196), taken inside

a disk, a chord (AB) and a diameter (CD) are drawn, then
the product of the segments of the chord (AM. MB) is equal
to the product of the segments of the diameter (CM . MD).
- Drawing two auxiliary chords AC and BD, we obtain two tri-
angles AMC and DMB (shaded in Figure 196) which are similar,

Figure 195
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since their angles A and D are congruent as inscribed intercepting
the same arc BC, and the angles B and 13 are congruent as inscribed
intercepting the same arc AD. similarity of the triangles we
derive: AM: MD = CM: MB, or equivalently

K

195. Coronaries. (1) For all chords (AB, EF, KL, Figure 196)
passing through the same point (M) inside a disk, the product of the
segments of each chord is constant, i.e. it is the same for all such
chords, since for each chord it is equal to the product of the segments
of the diameter. -

(2) The geometric mean between the segments (AM and MB) of
a chord (AB), passing through a point (M) given inside a disk, is
the segment (EM or MF) of the chord (EF) perpendicular to the
diameter (CD), at the given point, because the chord perpendicular
to the diameter is bisected by it, and hence

EM = MF = v'AM MB.

196. Theorem. The tangent (MC, Figure 197) from a point
(M) taken outside a disk is the geometric mean between a
secant (MA), drawn through the same point, and the exterior
segment of the secant (MB).

Draw the auxiliary chords AC and BC, and consider two triangles
MCA and MCB (shaded in Figure 197). They are similar because
ZM is their common angle, and ZMCB = ZBAC since each of them

Figure 196 Figure 197
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is measured by a half of the arc BC. Taking the sides MA and MC
in MC and

the MC and
MC the MA

MB the secant.
197. Corollaries. (1) The product of a secant (MA, Figure

197), passing through a point (Al) outside a disk, and the exterior
part of the secant (MB) is equal to the square of the tangent (MC)
drawn from the same point, i.e.:

MA . MB = MC2.

(2) For all secants (MA, MD, ME, Figure 197), drawn from a
point (Al) given outside a disk, the product of each secant and the
exterior segment of it, is constant, i.e. the product is the same for
all such secants, because for each secant this product is equal to the
square MC2 of the tangent drawn from the point Al.

198. Theorem. The product of the diagonals of an in-
scribed quadrilateral is equal to the sum of the products of
its opposite sides.

This proposition is called Ptolemy's theorem after a Greek
astronomer C'laudius Ptolemy (85 — 165 A.D.) who discovered it.

A A

D

Figure 198 Figure 199

Let AC and BD be the diagonals of an inscribed quadrilateral
ABCD (Figure 198). It is required to prove that

C C
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Construct the angle BAE congruent to ZDAC, and let E be the
intersection point of the side AE of this angle with the diagonal RD.
The triangles ABE and ADC (shaded in Figure 198) are similar,
since their angles B and C are congruent (as inscribed intercept-
ing the same arc AD), and the angles at the common vertex A are
congruent by construction. horn the similarity, we find:

AB:AC=BE:CD, i.e.
Consider now another pair of triangles, namely and AAED
(shaded in Figure 199). They are similar, since their angles RAC and
DAE are congruent (as supplementing to ZBAD the angles congru-
ent by construction), and the angles ACB and ADB are congruent
as inscribed intercepting the same angle AB. We obtain:

BC:ED=AC:AD, i.e. ACED=BCAD.

Summing the two equality, we find:

AC(BE+ED) = where BE+ED =BD.

EXERGIBES

Prove theorems:

400. If a diagonal divides a trapezoid into two similar triangles, then

this diagonal is the geometric mean between the bases.

401.* If two disks are tangent externally, then the segment of an ex-
ternal common tangent between the tangency points is the geometric
mean between the diameters of the disks.
402. If a square is inscribed into a right triangle in such a way
that one side of the square lies on the hypotenuse, then this side
is the geometric mean between the two remaining segments of the
hypotenuse.
403.* If AR and CD are perpendicular chords in a circle of radius
R, then AC2 + BD2 = 4R2.

404. If two circles are concentric, then the sum of the squares of

the distances from any point of one of them to the endpoints of any
diameter of the other, is a fixed quantity.
Hint: See §193.

405. If two segments AR and CD (or the extensions of both seg-
ments) intersect at a point E, such that AE . EB = CE ED, then
the points A, B, C, D lie on the same circle.
Hint: This is the theorem converse to that of §195 (or § 197).
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406.* In every the bisector AD satisfies AD2 = AB AC

Hint: Extend the bisector to its intersection E with the circum-
scribed circle, and prove that L\ABD is similar to
407.* In every triangle, the ratio of the sum of the squares of all
medians to the sum of the squares of all sides is equal to 5/4.
408. If an isosceles trapezoid has bases a and b, lateral sides c, and
diagonals ci, then ab + c2 = d2.

409. The diameter AB of a circle is extended past B, and at a point
C on this extension CD ± AB is erected. If an arbitrary point M
of this perpendicular is connected with A, and the other intersection
point of AM with the circle is denoted A', then AM . AA' is a fixed
quantity, i.e. it does not depend on the choice of Al.
410.* Given a circle (9 and two points A and B. Through these
points, several circles are drawn such that each of them intersects
with or is tangent to the circle 0. Prove that the chords connecting
the intersection points of each of these circles, as well as the tangents
at the points of tangency with the circle 0, intersect (when extended)
at one point lying on the extension of AB.
411. Using the result of the previous problem, find a construction of
the circle passing through two given points and tangent to a given
circle.

Find the geometric locus of:

412. Points for which the sum of the squares of the distances to two
given points is a fixed quantity.
Hint: See §193.
413. Points for which the difference of the squares of the distances
from two given points is a fixed quantity.

Computation problems

414. Compute the legs of a right triangle if the altitude dropped
from the vertex of the right angle divides the hypotenuse into two
segments in and n.
415. Compute the legs of a right triangle if a point on the hypotenuse
equidistant from the legs divides the hypotenuse into segments 15 and
20cm long.
416. The centers of three pairwise tangent circles are vertices of a
right triangle. Compute the smallest of the three radii if the other
two are 6 and 4 cm.
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417. From a point at a distance a from a circle, a tangent of length
2a is drawn. Compute the radius of the circle.
418. In the triangle ABC, the sides measure AB = 7, BC 15, and
AC = 10 units. Determine if the angle A is acute, right, or obtuse,
and compute the altitude dropped from the vertex B.
419. Compute the radius of a circle which is tangent to two smaller
sides of a triangle and whose center lies on the greatest side, if the
sides are 10, 24 and 26 units long.
420. Through a point, which is 7 cm away from the center of a circle
of radius 11 cm, a chord of length 18 cm is drawn. Compute the
segments into which the point divides the chord.
421. From a point outside a disk, a tangent a and a secant are drawn.
Compute the length of the secant if the ratio of its part outside the
disk to the part inside the disk is equal to m: it.
422. Compute the base of an isosceles triangle with a lateral side 14
units and the median to this side 11 units.
Hint: Apply the theorem of § 193.

423.* Express medians of a triangle in terms of its sides.
424.* Express altitudes of a triangle in terms of its sides.
425.* Express bisectors of a triangle in terms of its sides.
426.* A vertex of a triangle lies on the circle passing through the
midpoints of the adjacent sides and the barycenter. Compute the
median drawn from this vertex if the opposite side has length a.
427.* In a triangle, the medians drawn to two sides of 6 and 8 cm
long are perpendicular. Compute the third side.

7 Trigonometric functions

199. Trigonometric functions of acute angles. Let a be any
acute angle (Figure 200). On one of its sides, take an arbitrary point
M and drop the perpendicular MN from this point to the other side
of the angle. Then we obtain a right triangle OMN. Take pairwise
ratios of the sides of this triangle, namely:

MN : OM, i.e. the ratio of the leg opposite to the angle a, to
the hypotenuse,

ON : OM, i.e. the ratio of the leg adjacent to the angle a, to
the hypotenuse,

MN : ON, i.e. the ratio of the leg opposite to the angle a, to
the leg adjacent to it,
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and the ratios reciprocal to them:

GM GM ON
MN' ON' MN

The magnitude of each of these ratios depends neither
on the position of the point M on the side of the angle, nor
on the side of the angle the point A'! is taken on.

Indeed, if instead of the point Al we take another point M' on
the same side of the angle (or a point Al" on the other side of it), and
drop the perpendiculars M'N' (respectively M"N") to the opposite
side, then the right triangles thus formed: 1A.OM'N' and AOM"N"
will be similar to the triangle OMN, because a is their common
acute angle. From the proportionality of homologous sides of similar
triangles, we conclude:

MN M'N' M"N" ON ON' ON"
ON = ON' = ON" ' MN = M'N' = M"N"

Therefore, the ratios in question do not change their values when
the point Al changes its pdsition on one or the other side of the
angle. Obviously, they do not change when the angle a is replaced
by another angle congruent td it, but of course, they do change when
the measure of the angle changes.

Figure 200

Thus, to acute angles of every given measure, there cor-
respond quite definite values of each of these ratios, and we
can therefore say that each of these ratios is a function of the angle
only, and characterizes its magnitude.

All the above ratios are called trigonometric functions of the
angle a. Out of the six ratios, the following four are used most often:

- the ratio of the leg opposite to the angle a, to the hypotenuse is
called the sine of the angle a and is denoted sin a;

N"

0 N
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the ratio of the leg adjacent to the angle a, to the hypotenuse is
called the cosine of the angle a and is denoted cos a;

the ratio of the leg opposite to the angle to the leg adjacent
to it is called the tangent of the angle a and is denoted tan a;

the ratio of the adjacent leg to the opposite leg (i.e. the ratio
reciprocal to tan a) is called the cotangent of the angle a and is
denoted cot a.

Since each of the legs is smaller than the hypotenuse, the sine
and cosine of any acute angle is a positive number smaller than 1,
and since one of the legs can be greater, or smaller than the other
leg, or equal to it, then the tangent and cotangent can be expressed
by numbers greater than 1, smaller than 1, or equal to 1.

The remaining two ratios, namely the reciprocals of cosine and
sine, are called respectively the secant and cosecant of the angle
a, and are denoted respectively sec a and csc a.

200. Constructing angles with given values of a trigono-
metric function.

(1) Suppose it is required to construct an angle whose sine is equal
to 3/4. For this, one needs to construct a right triangle such that
the ratio of one of its legs to the hypotenuse is equal to 3/4, and take
the angle opposite to this leg. To construct such a triangle, take any
small segment and mark the segment AB (Figure 201) congruent to
4 such segments. Then construct a semicircle on AB as a diameter,
and draw an arc, of radius congruent to 3/4 of AB, centered at
the point B. Let C be the intersection point of this arc with the
semicircle. Connecting C with A and B we obtain a right triangle
whose angle A will have the sine equal to 3/4.

C

A B

(2) Construct an angle x satisfying the equation: cos x = 0.7.
The problem is solved the same way as the previous one. Take the
segment congruent to 10 arbitrary units for the hypotenuse AB (Fig-
ure 201), and congruent to 7 such units for AC. Then the angle A
adjacent to this leg will be the required one.

Figure 201
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(3) Construct an angle x such that tan x = 3/2. For this, one
needs to construct a right triangle such that one of its legs is 3/2
times greater than the other. Draw a right angle (Figure 202), and
mark a segment AB of arbitrary length on one of its sides, and the
segment AC congruent to on the other. Connecting the points
B and C, we obtain the angle B whose tangent is equal to 3/2.

C

B A

The same construction can be applied when the cotangent of the
angle x is given, but the required angle in this case will be the one
adjacent to the leg AC.

201. Behavior of trigonometric functions. It is convenient
to describe the behavior of sine and cosine as the angle varies, assum-
ing that the length of the hypotenuse remains fixed and equal to a
unit of length, and only the legs vary. Taking the radius QA (Figure
203) equal to an arbitrary unit of length, describe a quarter-circle
AM, and take any central angle AOB = a. Dropping from B the
perpendicular BC to the radius QA, we have:

BC BC
length of BC,

OC OCcosa
= =

= length of OC.

Imagine now that the radius OB rotates about the center 0 in the
direction pointed out by the arrow, starting from the position OA
and finishing in the position OM. Then the angle a will increase
from 0° to 90°, passing through the values LAOB, ZAOB', ZAOB",
etc. shown in Figure 203. In the process of rotation the length of the
leg BC opposite to the angle a, will increase from 0 (for a = 0°) to
1 (for a = 90°), and the length of the leg OC adjacent to the angle
a, will decrease from 1 (for a = 0°) to 0 (for a = 90°). Thus, when
the angle a increases from 0° to 90°, its sine increases from
0 to 1, and its cosine decreases from 1 to 0.

Figure 202
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Let us examine flow the behavior of the tangent. Since the tan-
gent is the ratio of the opposite leg to the adjacent leg, it is conve-
nient to assume that the adjacent leg remains fixed and congruent to
a unit of length, and the opposite leg varies with the angle. Take the
segment OA congruent to a unit of length (Figure 204) for the fixed
leg of the right triangle AOB, and start changing the acute angle
AOB = a. By definition,

AB AB
length of AB.

M

Figure 204Figure 203

N
B"

B'

B

A

Imagine that the point B moves along the ray AN starting from
the position A and going upward farther and farther, passing through
the positions B', etc. Then, as it is clear from Figure 204, both
the angle a and its tangent will increaâe. When the point B coincides
with A, the angle a = 00, and the tangent is also equal to 0. When
the point B moves higher and higher, the angle a becomes closer
and closer to 90°, and the value of the tangent becomes greater and
greater, exceeding any fixed number (i.e. grows indefinitely). In
such cases one says that a function increases (or grows) to infinity
(and expresses "infinity" by the symbol cc). Thus, when the angle
increases from 0° to 90°, its tangent increases from 0 to cc.

Rom the definition of the cotangent as the quantity reciprocal to
the tangent (i.e. cot x = 1/tan x), it follows that when the tangent
increases from 0 to cc, the cotangent decreases from cc to 0.

202. 'frigonometric relationships in right triangles. We
have defined trigonometric functions of acute angles as ratios of sides
of right triangles associated with these angles. Vice versa, one can
use the values of trigonometric functions in order to express metric
relationships in right triangles.

M

0 C" C'C A 0
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(1) From a right triangle ABC (Figure 205), we find: b/a =
sin B = cos C, c/a = cos B = sin C, and therefore

b=asinB=acosC, c=acosB=asinC,

i.e. a leg of a right triangle is equal to the product of the hypotenuse
with the sine of the angle opposite to the leg, or with the cosine of
the angle adjacent to it.

(2) From the same triangle, we find: b/c = tan B = cot C and
c/b = cot B = tan C, and therefore

b=ctanB=ccotC, c=bcotB=btanC,

i.e. a leg of a right triangle is equal to the product of the other leg
with the tangent of the angle opposite to the former leg, or with the
cotangent of the angle adjacent to it.

Notice that LB = 90° — LC. It follows therefore that for any
angle a

cosa = sin(90° — a), sina = cos(90° — a),

tan(90° — a) = cot a, cot(90° — a) = tan a.

According to the Pythagorean theorem, we have a2 = b2 + c2.
Using this we arrive at the following fundamental identity relating
the sine and cosine functions: the squares of the sine and cosine
of the same angle add up to one:

sin2 a + cos2 a = 1 for any angle a.

203. Some special values of trigonometric functions. Con-
sider the right triangle ABC (Figure 206) such that its acute an-
gle B = 45°. Then the other acute angle of this triangle is also
equal to 45°, i.e. the right triangle is isosceles: b = c. Therefore
a2 = b2 + c2 = 2b2, and hence b2/a2 = 1/2, i.e. b/a = 6

Besides, b/c = c/b = 1. Thus

sin 45° = cos4ö° = tan45° = cot 45° = 1.

- 6According to § 148, the hypotenuse a of an isosceles right triangle is incom-
mensurable with its leg b. Since a/b = we conclude that the number is
irrational.
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Consider now the right triangle ABC (Figure 207) such that its
acute angle B = 30°. According to the result of §81, the leg opposite
to this angle is congruent to a half of the hypotenuse. Thus

sin 30° = cos 60° =
2

Now it follows from the Pythagorean theorem that

cos 30° = sin 60° =
(1)2

V4 2'

Finally, since tan B = b: c = (1/2)a: we have:

tan30° =cot6O° = -i--
—

tanGO° =

Figure 205

cot 30° =

b

204. Trigonometric functions of obtuse angles. Definitions
of trigonometric functions of acute angles can be successfully gener-
alized to arbitrary angles using the concept of the number line and
negative numbers, discussed in §153.

Consider an arbitrary central angle BOA = a (see Figure 208,
where the angle a is shown obtuse) formed by a radius OB with the
fixed radius OA. To define cos a, we first extend the radius OA to the
infinite straight line, and identify the latter with the number line by
taking the center 0 and the point A to represent the numbers 0 and
1 respectively. Then we drop the perpendicular from the endpoint
of the radius B to the line OA. On the number line OA, the foot
of this perpendicular represents a real number which is taken for the
definition of the cosine of the angle a. To define sin a, we rotate
the number line OA counter-clockwise through the angle of 90°, and

C

a b b

C

B C A

2b

B A

Figure 206 Figure 207
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thus obtain another number line, OP, perpendicular to OA. The
foot of the perpendicular dropped from the point .8 to the line OP
represents the number sin a. Translating the line OP we obtaiii a
third number line AQ tangent to the circle at the point A. Then the
intersection point of the extended line 0.8 marks on the number line
AQ the value of tan a. Finally, sec a, csc a, and cot a, are defined
as the reciprocals of cos a, sin a, and tan a respectively.

Some properties of trigonometric functions are obvious from Fig-
ure 208. For example, when the angle a is obtuse, the values cos a
and tan a are negative, and sin a positive. Moreover:

sina = sin(180° — a), cosa = —cos(180° —a),

tan a = — tan(180° — a), cot a = cot(180° — a).

205. The law of cosines. The notion of the cosine function for
arbitrary angles allows one to unify the results of §190 and §191 and
express the square of one side of a triangle in terms of the opposite
angle and the other two sides, in a single formula known as the law
of cosines.

Theorem. The square of one side (c, Figure 209) of every
triangle (ABC) is equal to the sum of the squares of the other
two sides (a and b) minus twice the product of the latter two
sides with the cosine of the angle (C) opposite to the former
side:

2 9 2c =cc+b —2abcosC.

p Q

tan a

Figure 208
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Indeed, according to the result of §190 or §191, when the angle
C is acute or obtuse, we have respectively:

= a2 + — CD, or c2 = a2 +b2+ CD, (*)

where CD is the distance from the vertex C to the perpendicular BD
dropped from the vertex B to the opposite side. According to the
definition of the number cos C (which is positive when ZC is acute,
and negative when ZC is obtuse), CD = b cos C in the first case,
and CD = —b cos C in the second. Substituting this value of CD
into the corresponding equation we obtain the same resulting
formula in both cases: = a2 + b — 2ab cos C as required. Finally,
when the angle C is right, we have cos C = cos 90° = 0. Therefore
the law of cosines turns in this case into the equality c2 = a2 + b2,
which holds true due to the Pythagorean theorem. Thus the law of
cosines holds true for any triangle.

B B

a c

c 0 A

Figure 209

EXERCISES

428. Compute the values of the sine and cosine of the angles 90°,

120°, 135°, 150°, and 180°.
429. For which of the angles 0°, 90°, and 180° are the values of the
functions tan and cot defined?
430. Compute the values of the tangent and cotangent of 120°, 135°,
and 150°.
431. Prove that sin(a + 90°) = cosa, cos(a + 90°) = sin a.
432. Construct the angles a such that: (a) cos a = 2/3, (h) sin a =
—1/4, (c) tana = 5/2, (d) cota = —7.

433. Compute two sides of a triangle, if the third side is a, and the
angles adjacent to it are 45° and 15°.

Figure 210
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434. Is the triangle with the sides 3, 7, and 8 cm acute, right, or
obtuse? Compute the angle opposite to the middle side.
435. Compute the side AB of AABC if AC = 7, BC = 5, and
LB = 120°.

436.* Compute the sine and cosine of: (a) 15°, (b) 22°30'.
437•* Compute cos 18°.
Hint: The bisector drawn to a lateral side of an isosceles triangle
with the angle 36° at the vertex cuts off a triangle similar to the
original one.
438.* Prove that if from the endpoints of a diameter of a circle, two
intersecting chords are drawn, then the sum of the products of each
chord and the segment of it from the endpoint of the diameter to the
intersection point is a constant quantity.
439. Prove that a side a of a triangle is expressed through the op-
posite angle and the radius I? of the circumscribed circle as a =
2RsinA.
440. Derive the law of sines: in every triangle, sides are propor-
tional to the sines of the opposite angles.
441.* Two right triangles lie on the opposite sides of their common
hypotenuse h. Express the distance between the vertices of the right
angles through h and the sines of acute angles of the triangles.
Hint: Apply Ptolemy's theorem.
442. Prove the addition law for the sine function:

sin(a+/3) =sinacos/3+cosasin/3.
Hint: Apply the result of the previous problem.
443.* On a given segment AB, a point A'! is chosen, and two con-
gruent circles are drawn: through A and A/f, and Al and B. Find
the geometric locus of the second (i.e. other than Al) intersection
points of such circles.

8 Applications of algebra to geometry

206. The golden ratio. One says that a segment is divided in
the extreme and mean ratio if the greater part is the geometric
mean between the smaller part and the whole segment. In other
words, the ratio of the whole segment to the greater part must be
equal to the ratio of the greater part to the smaller one. We will
solve here the following construction problem:

7This ratio is known under many names, such as: the golden ratio, golden
section, golden mean, and also the divine proportion.
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Problem. To divide a segment in the extreme and mean ratio.
The problem will he solved if we find one of the two required

parts, e.g. the greater one. Let us assume first that the problem in
question is not about the construction of this part, but oniy about
the computation of its length. Then the problem can be solved al-
gebraically. Namely, if a denotes the length of the whole segment,
and x the length of the greater required part, then the length of the
other part is a — x, and the requirement of the problem is expressed
by the equation:

x2 =a(a—x), or x2+ax—a2 =0.

Solving this quadratic equation we find two solutions:

We discard the second solution as negative, and simplify the first
one:

/a2
2

a a s/ga a
2

a.

Thus the problem has a unique solution. If we manage to construct
a segment whose length is given by this formula, then our original
problem will be solved. Thus the problem reduces to constructing a
given formula.

Figure 211

In fact it is more convenient to construct this formula in the form
it had before the simplification. Considering the expression

+a2,

we notice that it represents the length of the hypotenuse of a right
triangle whose legs are a/2 and a. Constructing such a triangle and

D

A CG B
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then subtracting a/2 from its hypotenuse, we find the segment x1.
Therefore the construction can be executed as follows.

Bisect the given segment AB = a (Figure 211) at the point C.
From the endpoint B, erect the perpendicular and mark on it the
segment BD = BC. Connecting A and D we obtain a right triangle
ARD whose legs are AR = a and RD = a/2. Therefore its hy-
potenuse AD = + (a/2)2. To subtract a/2 from it, describe an
arc BE of radius RD = a/2 centered at the point D. Then the re-
maining segment AE of the hypotenuse will be equal to Xi. Marking
on AB the segment AG = AE, we obtain a point C, which divides
the segment AR in the extreme and mean ratio.

207. The algebraic method of solving construction prob-
lems. We have solved the previous problem by way of applying al-
gebra to geometry. This is a general method which can be described
as follows. Firstly one determines which line segment is required in
order to solve the problem, denotes known segments by a, b, c, ..., and
the required segment by x, and expresses relationships between these
quantities in the form of an algebraic equation, using requirements of
the problem and known theorems. Next, applying the methods of al-
gebra, one solves the equation, and then studies the solution formula
thus found, i.e. determines for which data the solution exists, and
how many solutions there are. Finally, one constructs the solution
formula, i.e. describes a construction by straightedge and compass
of a segment whose length is expressed by this formula.

Thus the algebraic method of solving geometric construction
problems, generally speaking, consists of four steps: (i) deriving an
equation, (ii) solving it, (iii) studying the solution formula, (iv) con-
structing it.

Sometimes a problem reduces to finding several line segments.
Then one denotes their lengths by several letters x, y, z, ..., and
seeks a system of as many equations as there are unknowns.

208. Construction of elementary formulas. Suppose that
solving a construction problem by the algebraic method we arrive
at a solution formula which expresses a required length x through
given lengths a, b, c, ... using only the arithmetic operations of addi-
tion, subtraction, multiplication and division, and the operation of
extracting square roots. We will show here, how to construct such a
formula by straightedge and compass.

First, one of the given segments, e.g. a, can be taken for the unit
of length. We may assume therefore that all segments are represented
by numbers. Respectively, the task of constructing the formulas
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expressing the required segment through given segments is reduced to
the problem of constructing the required number x expressed through
the given numbers a = 1, b, c,. by means of the four arithmetic
operations and by extracting square roots. Thus it suffices to show
how to obtain the result of these five elementary operations with
given numbers, using straightedge and compass.

(1) Addition and subtraction of numbers represented by given
segments can be easily done by marking the segments on the number
line (using compass).

(2) Multiplication and division can be done on the basis of Thales'
theorem by intersecting sides of an angle by parallel lines, as shown
in Figure 212. Namely, the proportions

x C x b
— = —, and — = —
b 1 1 c

are equivalent to x = bc and x = b/c respectively.
(3) To extract the square root x of a given number b, it suffices

to construct the geometric mean between b and 1 as shown in Figure
213.

Thus, any algebraic expressions involving only arithmetic
operations with and square roots of given numbers can be
constructed by straightedge and compass.

Remark. Conversely, as we will see in §213, using straight-
edge and compass one can construct only those algebraic expressions
which can be obtained from given numbers by a finite succession of
arithmetic operations and extraction of square roots.

EXERCISES

444. Construct the angle

Figure 212 Figure 213
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445. Construct an isosceles triangle such that the bisector of an angle
adjacent to the base cuts off a triangle similar to it.
446. Given three segments a, b, and e, construct a fourth segment x
such that x: c = a2 : b2.

447. Construct_segments expressed by the formulas: (a) x = abc/dc,
(b) x = + be
448. Given the base a and the altitude h of an acute triangle, com-
pute the side x of the square inscribed into the triangle, i.e. such
that one side of the square lies on the base, and the opposite vertices
on the lateral sides of the triangle.
449. A common tangent is drawn to two disks which have the dis-
tance d between the centers, and the radii R and r. Compute the
position of the intersection point of this tangent with the line of
centers, when the point lies: (i) to one side of both centers, or (ii)
between them.
450. Prove that if two medians in a triangle are congruent, then the
triangle is isosceles.
Hint: Use the algebraic and § 193.
451. In the exterior of a given disk, find a point such that the tangent
from this point to the disk is equal to a half of the secant drawn from
this point through the center.
Hint: Apply the algebraic method.
452. Through a given point outside a given disk, construct a secant
that is divided by the circle in a given ratio.
453. Inscribe a circle into a given sector.
454 Construct a triangle given its altitudes.
Hint: First derive from similarity of triangles that the altitudes
ha, hb, are inversely proportional to the respective sides a, b, c, i.e.
that ha : fib : = : :

9 Coordinates

209. Cartesian coordinates. We saw in §153 how to identify
points of a straight line with real numbers. It turns out that points
of a plane can similarly be identified with ordered pairs of real num-
bers. One important way of doing this is to introduce Cartesian
coordinates.8 To construct a Cartesian coordinate system on

- 5The term Cartesian originates from Cartesius, the Latinized name of René
Descartes (1696 — 1650), the French philosopher who introduced into geometry
the systematic use of algebra.
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the plane, pick apoint 0 (Figure 214) and two perpendicular lines
passing through it. Then pick a unit of length, and mark segments
GA and OB of unit length on the first and second line respectively.
The point 0 is called the origin of the coordinate system, and the
infinite straight lines OA and OB the 1st and the 2nd coordinate
axes respectively.

Next, identify each of the coordinate axes with the number line
by choosing the origin to represent the number 0 on each of them,
and the point A (respectively B) to represent the number 1 on the
1st (respectively the 2nd) axis.

P N• 2

B

I
I

I 2

Figure 214

Now, given a coordinate system, to any point P on the plane, we
associate an ordered pair (x, y) of real numbers called respectively
the 1st and the 2nd coordinate of P. Namely, we draw through P
two lines PN and PM, parallel to the coordinate axes OA and GB
respectively. The intersection point Al (respectively N) of the line
GM (respectively ON) with the 1st (respectively the 2nd) coordi-
nate axis represents on this axis a real number, which we take for
x (respectively y). For instance, the point P in Figure 214 has the
coordinates x -= —3, and y = 2. Vice versa, the point P can be re-
covered from its coordinates (x, y) unambiguously. Namely, mark on
the 1st and 2nd coordinate axes the points representing the numbers
x and y respectively, and erect perpendiculars to the axes from these
points. Obviously, P is the intersection point of these perpendicu-
lars. Therefore we have established a correspondence between points
of the plane and ordered pairs of their coordinates. Clearly, the co-
ordinates in this construction can be arbitrary real numbers, and we
will write P(x, y) for a point P whose 1st and 2nd coordinates are
given by the numbers x and y respectively (e.g. P(—3, 2) is the point
denoted P which has the coordinates x = —3 and y = 2).



176 Chapter 3. 811 VIlLA FtITY

210. The coordinate distance formula.
Problem. To compute the length of the segment between two

points P(x, y) and P'(x', y') with given Cartesian coordinates (Figure
215).

y
PS

bslnC C a B

Q y

Figure 215 Figure 216

The lines PQ and P'Q, parallel to the 1st and 2nd coordinate

axes respectively, are perperi'dicular (since the coordinate axes are),

and therefore intersect at some point Q. Suppose that the segment
PP' is not parallel to either of the coordinate axes. Then PP' is the
hypotenuse of the right triangle PQP'. Applying the Pythagorean

theorem, we find the distance between P(x, y) and P'(x', y'):

In the special case when the segment PP' is parallel to one of the
coordinate axes, the right triangle PQP' degenerates into this seg-
ment, but it is easy to check that the above distance formula remains
true (because in this case either x = or y = y').

211. The method of coordinates. One can successfully use
coordinates to solve geometric problems. Here is an example.

Problem. To re-prove the law of cosines using coordinates.
In Z�SABC, let a, b, and c be the sides opposite to the vertices A,

.8, and C respectively. It is required to prove that

2 2c =a +lr—2abcosC.

Pick a Cartesian coordinate system in such a way that the origin
is the vertex C (Figure 216), the positive ray of the 1st coordinate
axis contains the side CE, and the positive ray of the 2nd coordinate
axis lies on the same side of the line CE as the vertex A. Then the
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vertices C, B, and A have coordinates respectively: (0, 0), (a, 0)
(by construction), and (b cos C, b sin C) (by the definition of sine
and cosine). The distance c between the vertices A and B can be
computed using the coordinate distance formula of §210 with (x, y) =
(bcosC,bsinC) and (x',y') = (a,0), i.e.

c2 = (b cos C—a)2+(b sin C)2 = b2 cos2 C—2ab cos C+a2+b2 sin2 C.

The first and the last summands here add up to b2, since cos2 C +
sin2 C = 1. We obtain therefore c2 = a2 + b2 — 2ab cos C as required.

212. Geometric loci and their equations. The geometric lo-
cus of all points, whose coordinates (x, y) satisfy a certain equation,
is said to be described by this equation, and is called the solution
locus of it. Many familiar geometric loci can be described in coor-
dinates as solution loci of suitable equations. We discuss here the
equations of straight lines and circles.

Problem. To find the geometric locus of points P(x, y) whose
coordinates satisfy the equation ax + fly = 'y, where a, /3, and 'y are
given numbers.

q

x:

Figure 217

When a = /3 = 0, the left hand side of the equation is equal to
0, and therefore the geometric locus in question contains all points
of the plane when 'y = 0, and contains no points when 'y $ 0. So,

let us assume that at least one of the coefficients a, /3 is non-zero.

In this case we claim that the points whose coordinates (x, y) satisfy
the equation ax + fly = form a straight line. To see this, we divide

the equation by /3, assuming that /3 0, and obtain a new equation
y = px + q, where p = —a/fl, and q = 'y//3. Of course, multiplication

or division of an equation by a non-zero number does not change the

locus of points whose coordinates satisfy the equation. Thus we need
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to show that the locus of solutions of the new equation is a straight
line.

Consider first the case when q = 0. Points satisfying the equation
y = px are exactly the points with coordinates (x, y) of the form
(x, px). The locus of such points contains exactly one point for each
value of x and includes: the origin 0 (Figure 217) whose coordinates
are (x,y) = (0,0); the point P with coordinates (x,y) = (l,p);
all points homothetic to P with respect to the center 0 and with
arbitrary homothety coefficients x (positive or negative). Thus the
locus is a straight line passing through the origin (and non-parallel
to the 2nd coordinate axis).

When q $ 0, we note that the locus does not contain the origin,
but instead contains the point Q with coordinates (x, y) = (0, q).
Moreover, each point (x, px) of the line y = px is replaced by the
new point (x, px + q), obtained from the old one by translation in
the direction of the segment OQ. Thus the solutions to the equation
y = px + q form the line parallel to the line y = px and passing
through the point Q(0,q).

Finally, when fi = 0, but a 0, we can divide the equation by
a and obtain a new equation x = r, where r = 7/a. When r = 0,
the solutions locus is the 2nd coordinate axis, and when r 0,
the solutions (x, y) = (r, y) form a straight line parallel to the 2nd
coordinate axis and passing through the point (r, 0).

Since any line on the plane is parallel to one of the lines passing
through the origin, we conclude that, vice versa, any straight line on
the plane is the solution locus to an equation of the form ax+fiy =
where at least one of the coefficients a, is non-zero.

Problem. To find an equation of the straight line passing through
two points P'(x', y') and P"(x", y") with given coordinates.

Let P(x, y) (Figure 218) be a third point on the line passing
through P' and P". Then P is homothetic to P" with respect to
the center P' (and with an arbitrary homothety coefficient which
can be positive or negative). The corresponding homothety of right
triangles (shaded on Figure 218) yields the following proportion:

x—a! — y—y'
—

This equation makes sense whenever a? a?' and y' $ y" (i.e. when
the segment P'P" is not parallel to any coordinate axis), and can be



9. Coordinates 179

rewritten in the form ax + 0y = with

1 1 x'
fi=— II --;— ,, ,.x—x y—y x=x y—y

When x' = x" (or y' = y"), the line is parallel to the 2nd (respectively
the 1st) coordinate axis, and has an equation x = x' (respectively
y = 11').

Figure 218

Problem. To find an equation of the circle of a given radius R

and centered at a given point C(xo, yo) (Figure 219).
The circle consists of all points P(x, y) whose distance to C is

equal to R. Using the coordinate distance formula, we obtain the
equation — xo)2 + (y — yo)2 = R or, equivalently,

(x — xo)2 + (p — yo)2 = R2.

213. Constructibility. We saw in §206 that geometric quanti-
ties expressible in terms of given ones by means of elementary for-
mulas, i.e. by arithmetic operations and extraction of square roots,
can be constructed by straightedge and compass. Now we can show,
using the method of coordinates, that the converse proposition holds
true:

Every geometric quantity which can be constructed from
given ones by means of straightedge and compass, can be
expressed in terms of the given quantities using only arith-
metic operations and extraction of square roots.

The starting point is the observation that a construction by
straightedge and compass is a finite succession of the following ele-
mentary constructions:

P.

C x

Figure 219



180 Chapter 3. SIMILAF'JTY

(i) drawing a new line through two given points;
(ii) drawing a new circle, given its center and the radius;
(iii) drawing a circle, given one of its points and the center;
(iv) constructing a new point by intersecting two given non-

parallel lines;
(v) constructing a new point by intersecting a given line with a

given circle;
(vi) constructing a new point by intersecting two given non-

concentric circles.
We can equip the plane with a Cartesian coordinate system and

assume that "given points" are points whose coordinates are given
real numbers, and "given radii" are segments whose lengths are given.
Thus it suffices to show that the elementary constructions ('i,l —
(vi) give rise to points which have coordinates expressible through
given numbers by elementary formulas, or to lines and circles whose
equations have coefficients expressible by elementary formulas.

(i) As we have seen in the line passing through two given
points has an equation whose coefficients are expressed through the
coordinates of these points by means of arithmetic operations.

(ii) Similarly, the circle with given center and radius has an equa-
tion whose coefficients are arithmetic expressions of the coordinates
of the center and the radius.

(iii) According to §210, the distance between two given points
is expressed through their coordinates as the square root of an ex-
pression involving only arithmetic operations. Thus the required
conclusion follows from (ii).

(iv) To find the coordinates of the intersection point of two non-
parallel lines, whose equations have given coefficients (e.g. the lines
with the equations 2x — 3y = 1 and 6x + 5y = 7), we can use one
of the equations to express one of the coordinates through the other
one (e.g. express x = (1+ 3y)/2 = 0.5 + l.Sy from the first equation),
substitute the expression into the other equation (i.e. write 6(0.5 +
l.5y) +5y 7, or 8y = 4), find the value of the other coordinate from
the resulting equation (p = 4/8 = 0.5), and then compute the value
of the former coordinate (x = 0.5+1.5 x 0.5 = 1.25). This procedure
involves only arithmetic operations with the given coefficients.

(v) To find intersection points of a line and a circle with the given
equations

ax+f3y=7, and (x—xo)2+(y—yo)2 =
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we can express one of the coordinates through the other from the first
equation (say, y = px + q, if /3 0), and substitute the result into the
second equation. The resulting equation (x — xo)2 + (px + q — yo)2 =
1?2 is easily transformed (by squaring explicitly the expression in
parentheses and reducing similar terms) to the form

Ax2+Bx+C=0,

where A, B, and C are arithmetic expressions of the given numbers

a, /3, X0, and H. As it is well-known from algebra, solutions

of this equation are expressed through the coefficients A, B, and C,

using only arithmetic operations and square roots, namely (if A 0 0):

—B±YB2-4AC
2A

Thus the coordinate x of an intersection point, and therefore the
other coordinate y = px + q as well, are obtained from the given
numbers using only successions of elementary formulas.

(vi) Consider equations of two circles with given centers and radii:

and (x—x2)2+(y—y2)2

The coordinates (x, y) of intersection points of the circles must satisfy
both equations. Squaring explicitly the parenthesis we rewrite the
equations in this way:

+ — 2x1x — 2YiY = — —

We can replace the second equation in this system by the difference
of the second and the first equation.The result has the form

2(xi — X2)X + 2(yi — Y2)Y = 7, (*)

where 7 is an arithmetic expression of given numbers. Since the two
circles are non-concentric, the differences Xi — X2 and Yl — Y2) cannot
both be zero, and hence the equation (*) describes a straight line.
The problem (vi) of intersecting two non-concentric circles with given
centers and radii is reduced therefore to the problem (v) qf intersect-
ing a line and a circle whose equations have given coefficients. Thus
coordinates of intersection points of two given non-concentric circles
are also obtained by successions of elementary operations with given
numbers.
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Remark. As we know, two circles can have at most two common
points and such points must lie on a line perpendicular to the
line of centers 17). Our result shows how to express an equation
of this line (namely (*)) in terms of the radii and the centers of the
circles.

EXERGISES

455. Prove that the triangle with the vertices A(2, —3), B(6, 4), and
C(1O, —4) is isosceles. Is it acute, right or obtuse?
456. Prove that the triangle with the vertices A(—3, 1), B(4, 2), and
C(3, —1) is right.
457. Find coordinates of the midpoint of a segment in terms of
coordinates of its endpoints.
458. Prove that each coordinate of the barycenter of a triangle is the
arithmetic average of the corresponding coordinates of the vertices.
459. The diagonals of a square ABCD intersect at the origin. Find
coordinates of B, C, and D,if the coordinates of A are given.
460. Prove that the sum of the squares of distances from the vertices
of a given square to a line passing through its center is constant.
461. Compute the distance between the incenter and barycenter of
a right triangle with legs 9 and 12 cm.
462. Prove that for any rectangle ABCD and any point P, we have
PA2 + PC2 = PB2 + PD2.
463. Can a triangle be equilateral, if distances from its vertices to
two given perpendicular lines are expressed by whole numbers?
464. Using the method of coordinates, re-prove the result of §193:
the sum of the squares of the sides of a parallelogram is equal to the
sum of the squares of its diagonals.
465. Prove that the geometric locus of points P(x, y) described by
the equation x2 + y2 = 6x + 8y is a circle, and find its center and
radius.
466. Using the method of coordinates, re-prove Apollonius' theorem
that the geometric locus of points from which the distances to two
given points have a given ratio m : n, not equal to 1, is a circle.
4 67.* Prove that if three pairwise intersecting circles are given, then
the three lines, each passing through the intersection points of two
of the circles, are concurrent.



Chapter 4

REGULAR POLYGONS
AND
CIRCUMFERENCE

I Regular polygons

214. Definitions. A polygon is called regular if all of its
sides are congruent and all of its interior angles are congruent. More
generally, a broken line (not necessarily closed) is called regular,
if all of its sides are congruent, and all of its angles on the same
side of the broken line are congruent. For example, the broken line
in Figure 220 has congruent sides and- angles, but it is not regular
since some of the congruent angles are situated on the opposite sides
of the line. The five-point star in Figure 221 is an example of aa

Figure 220 Figure 221 Figure 222

closed regular broken line, since all of its 5 sides are congruent as

183
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all of its 5 interior angles are. But we do not consider it a polygon,
because it has self-intersections. An example of a regular polygon is
the pentagon shown in Figure 222.

Forthcoming theorems show that construction of regular polygons
is closely related to division of circles into congruent parts.

215. Theorem. If a circle is divided into a certain number
(greater than 2) of congruent parts, then:

(1) connecting every two consecutive division points by
chords, we obtain a regular polygon, inscribed into the cir-
cle;

(2) drawing tangents to the circle at all the division points
and extending each of them up to the intersection points
with the tangents at the nearest division points, we obtain
a regular polygon circumscribed about the circle.

Let the circle (Figure 223) be divided at the points A, B, C, etc.
into several congruent parts, and through these points the chords
AB, BC, etc. are drawn, and the tangents MBN, NCP, etc. Then
the inscribed polygon ARCDEF is regular, because all its sides are
congruent (as chords subtending congruent arcs), and all of its angles
are congruent (as inscribed angles, intercepting congruent arcs).

M

p

Figure 223 Figure 224

In order to prove regularity of the circumscribed polygon
MNPQRS, consider the triangles AMB, BNC, etc. The bases AR,
BC, etc. of these triangles are congruent, and the angles adjacent to
the bases are also congruent because each of them has the same mea-
sure (since an angle formed by a tangent and a chord measures a half
of the arc contained inside the angle). Thus all these triangles are
isosceles and congruent to each other, and hence MN = NP = .

and ZM = ZN = ..., i.e. the polygon MNPQRS is regular.

Q
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216. Remark. If from the center 0 (Figure 224), we drop to
the chords AB, BC, etc. perpendiculars and extend them up to the
intersections with the circle at the points 1kT, N, etc., then these
points bisect all the arcs and chords, and therefore divide the cir-
cle into congruent parts. Therefore, if through the points NI, N,
etc. we draw tangents to the circle up to their mutual intersection
as explained earlier, then we obtain another circumscribed regular
polygon A'B'C'D'E'Fç whose sides are parallel to the sides of the
inscribed one. Each pair of vertices: A and B and etc., lie
on the same ray with the center, namely on the bisector of the angle
MON and other such angles.

217. Theorem. If a polygon is regular, them;
(1) it is possible to circumscribe it by a circle;
(2) it is possible to inscribe a circle into it.

rigure 225

(1) Draw a circle through any three consecutive vertices A, B,
and C (Figure 225) of a regular polygon ABCDE and prove that it
will pass through the next vertex D. For this, drop from the center
O the perpendicular OK to the chord BC and connect 0 with A and
D. Rotate the quadrilateral ABKO in space about the side OK so
that it falls onto the quadrilateral DCKO. Then the line KB will
fall onto ICC (due to equality of the right angles at the point K), and
B will merge with C (since the chord BC is bisected at K). Then
the side BA will fall onto CD (due to equality of the angles B and
C), and finally, the point A will merge with D (since BA = CD).
This implies that OA will merge with OD, and therefore the points
A and D are equidistant from the center. Thus the point D lies on
the circle passing through A, B, and C. Similarly, this circle, which
passes through B, C, and D, will pass through the next vertex E,
etc; hence it passes through all vertices of the polygon.

E
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(2) It follows from part (1) that sides of a regular polygon can be
considered as congruent chords of the same circle. But such chords
are equidistant from the center, and therefore the perpendiculars
OM, ON, etc., dropped from 0 to the sides of the polygon, are
congruent to each other. Thus the circle described by the radius
GM from the center 0 is inscribed into the polygon ABCDE.

218. Coronaries. (1) Any regular polygon (ABCDE, Figure
226) is COnVeX, i.e. it lies on one side of each line extending any of
its sides.

rigure 226

Indeed, extend, for instance, the side BC and note that it divides
the circumscribed circle into two arcs. Since all vertices of the poly-
gon lie on this circle, they must all lie on one of these arcs (because
otherwise the broken line BAEDC would intersect the segment BC,
in contradiction to our definition of a polygon). Thus the whole
regular polygon lies in the disk segment (BAEDC in Figure 226)
enclosed between this arc and the line BC, and hence on one side of
this line.

(2) As it is clear from the proof of the theorem, the inscribed and
circumscribed circles of a regular polygon are concentric.

219. Definitions. The common center of the inscribed and
circumscribed circle of a regular polygon is called the center of this
polygon. It lies on each angle bisector of the polygon and on each
perpendicular bisector to its sides. Therefore, in order to locate the
center of a regular polygon, it suffices to intersect two of its angle
bisectors, or two perpendicular bisectors of its sides, or one of those
angle bisectors with one of those perpendiculars.

The radius of the circle circumscribed about a regular polygon is
called the radius of the polygon, and the radius of the inscribed circle
its apothem. The angle between two radii drawn to the endpoints
of any side is called a central angle of the regular polygon. There
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are as many such angles as there are sides, and they all are congruent
(as central angles corresponding to congruent arcs).

Since the sum of all the central angles is 4d (or 360°), then each
of them is 4d/n (or 360°/n), where n denotes the number of sides of
the regular polygon. Thus, the central angle of a regular hexagon is
360°/6 = 60°, of a regular octagon (i.e. 8-gon) 3600/8 = 45°, etc.

220. Theorem. Regular polygons with the same number
of sides are similar, and their sides have the same ratio as
their radii or apothems.

To prove the similarity of regular n-gons ABCDEF and
A'B'C'D'E'F' (Figure 227), it suffices to show that their angles are
congruent and their sides are proportional. The angles are congruent
because they have the same measure, namely 2d(n — (see §82).
SinceAB=BC=CD=... a.ndA'B'=B'C'=C'D'=...,itis
obvious that

AR BC CD
A'R'R'C'C'D'"'

i.e. that the sides of such polygons are proportional.

F C'

Let 0 and 0' (Figure 227) be the centers of the given regular
polygons, GA and O'A' be their radii, and GM and GM' be their
apothems. The triangles GAB and O'A'B' are similar, since the
angles of one of them are respectively congruent to the angles of the
other. It follows from the similarity that

AROA GM
A'B' G'A'

Corollary. Since the perimeters of similar polygons have the
same ratio as their homologous sides then perimeters of reg-
ular n-gons have the same ratio as their radii or apothems.

0

A M B

Figure 227
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Example. Let a and b be the sides of regular polygons with
the same number of sides, respectively inscribed into and circum-
scribed about the same circle of radius R. Then the apothem of
the circumscribed polygon is R. From the right triangle AOM
(Figure 227), we find the apothem OM of the inscribed polygon:

2 9 2 9 9 .OM = & — (a/2) = — cr/4. Since the inscribed and circum-
scribed polygons are similar, we can write the proportion between
their sides and apothems:

5 i.e.b=
a \rn2_a2/4'

Thus we obtain a formula expressing the side of the circumscribed
regular polygon through the side and the radius of the corresponding
inscribed regular polygon.

221. Symmetries of regular polygons. In the circumscribed
circle of a regular polygon, draw through any vertex C the diameter
CN (Figure 228). It divides the circle and the polygon into two
parts. Imagine that one of these parts (say, the left one) is rotated
in space about the diameter so that it falls onto the other (i.e. right)
part. Then one semicircle will merge with the other semicircle, the
arc CB with the arc CD (due to the congruence of these arcs), the
arc BA with the arc DE (for the same reason), etc., and therefore
the chord BC will merge with the chord CD, the chord AB with the
chord DE, etc. Thus the diameter of the circumscribed circle drawn
through any vertex of a regular polygon is an axis of symmetry of this
polygon. As a consequence of this, each pair of the vertices such as B
and D, A and E, etc., lie on the same perpendicular to the diameter
CN and at the same distance from it.

Draw also the diameter MN (Figure 229) of the circumscribed
circle, which is perpendicular to any side CD of the regular poly-
gon. This diameter also divides the circle and the polygon into two
parts. Rotating one of them in space about the diameter until it
falls onto the other part, we find out that one part of the polygon
will merge with the other part. We conclude that a diameter of the
circumscribed circle perpendicular to any side of a regular polygon is
an axis of symmetry of this polygon.

Consequently, each pair of vertices such as B and E, A and F,
etc., lie on the same perpendicular to the diameter Jt'IIV and at the
same distance from it.

- If the number of sides of the regular polygon is even, then the di-
ameter drawn through any vertex of the polygon also passes through



1. Regular polygons

the opposite vertex, and the diameter perpendicular to any side of
the polygon is also perpendicular to the opposite side of it. If the
number of sides is odd, then the diameter passing through any vertex
is perpendicular to the opposite side, and conversely, the diameter
perpendicular to any side of such a regular polygon passes through
the opposite vertex. For example, the regular hexagon has 6 axes of
symmetry: 3 axes passing through the vertices, and 3 axes perpen-
dicular to the sides; the regular pentagon has 5 symmetry axes, each
oue passing through a vertex and perpendicular to the opposite side.

Ftgure 228 Figure 230

Any regular polygon with an even number of sides also has a
center of symmetry which coincides with the center of the polygon
(Figure 230). Indeed, any straight line KL, connecting two points
on the boundary of the polygon and passing through its center 0
is bisected by it (as it is seen from congruence of the triangles
OBK and OEL shaded in Figure 230).

Finally, we can identify a regular n-gon with itself by rotating
it about its center through the angle 4d/n in any direction. For
instance (see Figure 230), rotating the hexagon 60° clockwise about
0, we make the side AR go into BC, the side BC into CD, etc.

222. Problem. To inscribe into a given circle: (1) a square, (2)
a regular hexagon, (c) a regular triangle, and to express their sides
through the radius of the circle.

We will denote a regular n-gon inscribed into a
circle of radius R.

(1) On Figure 231, two mutually perpendicular diameters AC
and RD are drawn, and their endpoints are connected consecutively
by chords. The resulting quadrilateral ABCD is an inscribed square
(because its angles are 90° each, and its diagonals are perpendicu-
lar). From the right triangle AOB we find, using the Pythagorean

C MD

N E

Figure 229
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theorem, that

i.e.

(2) On Figure 232, a chord corresponding to a central angle of
600, i.e. to the central angle of a regular hexagon, is shown. In the
isosceles triangle AOB each of the angles A and B is (180° — 60°)/2 =
60°. Therefore the triangle is equiangular, and hence equilateral.
Thus

AR = AO, i.e. a6 = 1?.

In particular we obtain a simple way of dividing a circle into 6 congru-
ent parts by consecutively marking on it the endpoints of 6 chords,
each 1 radius long.

AQC
B

Figure 231 Figure 232 Figure 233

(3) To inscribe a regular triangle, divide a circle into 6 congruent
parts (Figure 233), and then connect every other division point. The
triangle ABC thus obtained is equilateral, and hence regular. Fur-
thermore, draw the diameter ED and connect A and D to obtain a
right triangle BAD. From the Pythagorean theorem, we find:

AD = VBD2 -AD2 = - R2, i.e. = =

223. Problem. To inscribe into a given circle a regular decagon
and to express its side aio through the radius .1?.

Let us first prove the following important property of the regular
lO-gon. Let AR (Figure 234) be a side of the regular lO-gon. Then
the angle AQE contains 36°, and each of the angles A and B of
the isosceles triangle AQE measures (180° — 36°)/2 = 72°. Bisect
the angle A by the line AC. Then each of the angles formed at the
vertex A contains 36°, and therefore AACO is isosceles (as having

D
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two congruent angles), i.e. AC = CO, and is also isosceles
(since LB = 72°, and LACE = 180° — 72° — 36° = 72°), ie. AD =
AC = CO. By the property of the angle bisector (fl84) we have the
proportion: AO : AD = CO : CD. Replacing AO and AD with the
congruent segments DO and CO, we obtain:

BO:CO=CO:CR

In other words, the radius DO is divided at the point C in the ex-
trenie and mean ratio and CO is the greater part of it. Thus,
the side of a regular decagon inscribed into a circle is congruent to
the greater part of the radius divided in the extreme and mean ratio.
In particular (see §206), the side alo can be found from the quadratic
equation:

x2+Rx—R2=0, Le.aio=x=
2

R=R0.6180...

Now the construction problem is easily solved: divide a radius (e.g.
OA) in the extreme and mean ratio as explained in §206, set the
compass to the step congruent to the greater part of the radius,
mark with this step 10 points around the circle one after another,
and connect the consecutive division points by chords.

Figure 234 Figure 235

Remarks. (1) In order to inscribe into a given circle a regular
pentagon, one divides the circle into 10 congruent parts and consec-
utively connects every other point by chords.

(2) The 5-point star can he constructed 1 similarly by dividing
a circle into 10 congruent parts and connecting the division points
skipping three at a time (Figure 235).

'In some countries, this problem is of national importance.— AG.
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(3) The equality

2 16 51
5 315 1515

gives a simple way to inscribe a regular 15-gon, since we already
know how to divide a circle into 5 and 3 congruent parts.

224. Problem. To double the number of sides of an inscribed

regular polygon.

This is a concise formulation of two distinct problems: given an
inscribed regular n-gon, (1) to construct a regular 2n-gon inscribed
into the same circle; (2) to compute the side of the 2n-gon through
the side of the n-gon and the radius of the circle.

(1) Let AB (Figure 236) be a side of a regular n-gon inscribed
into a circle with the center 0. Draw OC I AB and connect A with
C. The arc AB is bisected at the point C, and therefore the chord
AC is a side of a regular 2n-gon inscribed into the same circle.

C

Figure 236

(2) In the angle 0 is acute (since the arc ACB is smaller
than a semicircle, and hence the arc AC is smaller than a quarter-
circle). Therefore the theorem of §190 applies:

aL=AC2=0A2+0C2_20C.0D2R2_2R0D.

From the right triangle AOD, we find:

OD = AD2 = — =

Thus

-
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The side a2n is obtained from this doubling formula by extracting
the square root.

Example. Let us compute the side of a regular 12-gon, taking for
simplicity R = 1 (and therefore a6 = 1). We have:

i.e. a12=

Since the sides of regular n-gons are proportional to their radii, then
for the side of a regular 12-gon inscribed into a circle of an arbitrary
radius R we obtain the formula:

a12 = — = B. 0.517...

225. Which regular polygons can be constructed by
straightedge and compass? Applying the methods described in
the previous problems, we can, using only straightedge and compass,
divide a circle into a number of congruent parts (and hence construct
the corresponding regular polygons) shown in the table:

3, ... generally

4, 422, ... generally

5, ... generally 5?;
15, 15.2, ... generally

A German mathematician C. F. Gauss (1777—1855) proved that

using straightedge and compass, it is possible to divide a circle into
only such a prime number of congruent parts, which is expressed by
the formula 22" + 1. For instance, it is possible to divide a circle
into 17 congruent parts, or 257 congruent parts, since 17 and 257
are prime numbers of the form 22" + 1 (17 = 222 + 1; 257 = +
1). A proof of Gauss' theorem requires methods which go beyond
elementary mathematics.

It is also proved that using straightedge and compass one can
divide a circle only into such a composite number of congruent parts
which contains no other factors except: (1) prime factors of the form
22" + 1, in the first power; (2) the factor 2, in any power.

Whole numbers = + 1 are called Fermat numbers af-
ter the remarkable French mathematician P. Fermat (1601—1665)
who conjectured (erroneously) that all such numbers are prime. At
present only the first five Fermat numbers are known to be prime:

F0=3, F1=5, F2=17, F3=257, F4=65537.
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EXERCISES

468. Find a formula for the side a regular n-gon inscribed into
the circle of radius R for: (a) n = 24, (b) n = 8, (c) n = 16.

469. Find a formula for the sides of a regular triangle and regular
hexagon circumscribed about a circle of a given radius.
470. Let AR, BC, and CD be three consecutive sides of a regular
polygon with the center 0. Prove that if the sides AR and CD
are extended up to their intersection point E, then the quadrilateral
OAEC can be circumscribed by a circle.
471. Prove that: (a) every circumscribed equiangular polygon is
regular; (b) every inscribed equilateral polygon is regular.
472. Give an example of: (a) a circumscribed equilateral quadrilat-
eral which is not regular; (b) an inscribed equiangular quadrilateral
which is not regular.
473. Prove that: (a) every circumscribed equilateral pentagon is
regular; (b) every inscribed equiangular pentagon is regular.

4 For which n does there exist: (a) a circumscribed equilateral
m-gon which is not regular; (b) an inscribed equiangular n-gon which
is not regular?
475. Prove that two diagonals of a regular pentagon not issuing from
the same vertex divide each other in the extreme and mean ratio.
475.* Prove that if ABCDEFG is a regular 7-gon, then 1/AR =
1/AC + 1/AD.

4 Prove that the difference between the greatest and smallest
diagonals of a regular 9-gon is congruent to its side.
478. Cut off the corners of a square in such a way that the resulting
octagon is regular.
479. On a given side, construct a regular decagon.
480. Construct the angles: 18°, 30°, 72°, 750, 30, 24°.

481. Inscribe into a square a regular triangle so that one of its ver-
tices is placed: (a) at a vertex of the square; (b) at the midpoint of
one of its sides.
482. Into a given equilateral triangle, inscribe another equilateral
triangle such that its side is perpendicular to a side of the given one.
483. Given a regular n-gon circumscribed about a given circle, con-
struct a regular 2n-gon circumscribed about the same circle.
484.* Divide a given angle congruent to 1/7th of the full angle into:
(a) three congruent parts; (h) five congruent parts.
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2 Limits

226. Length of a curve. A segment of a straight line can be
compared to another segment, taken for a unit, because straight lines
can be superimposed onto each other. This is how we define which
segments to consider congruent, which lengLhs equal, or unequal,
what is the sum of segments, which segment is 2, 3, 4, . . . times
greater than the other, etc. Similarly, we can compare arcs of the
same radius, because circles of the same radius can be superimposed.
However no part of a circle (or another curve) can he superimposed
onto a straight segment, which makes it impossible to decide this way
which curvilinear segment should be assigned the same length as a
given straight segment, and hence which curvilinear segment should
be considered 2,3,4, . . . times longer than the straight one. Thus we
encounter the need to define what we mean by circumference as the
length of a circle, when we compare it (or a part of it) to a straight
segment.

For this, we need to introduce a concept of importance to all of
mathematics, namely the concept of limit.

227. Limit of a sequence. In questions of algebra or geometry
one often encounters a sequence of numbers following one another
according to a certain pattern. For instance, the natural series:

1, 2, 3, 4, 5,

arithmetic or geometric progressions extended indefinitely:

a, a+d, a+2d, a+3d,
9 3a, aq, aq

are examples of infinite sequences of numbers, or infinite numerical
sequences.

For each such a sequence, one can point out a rule by which its
terms are formed. Thus, in an arithmetical progression, each term
differs from the previous one by the same number; in a geometric
progression each two consecutive terms have the same ratio.

Many sequences are formed according to a more complex pattern.
Thus, approximating from below with the precision of up to: first
1/10, then 1/100, then 1/1000, and continuing such approximation
indefinitely, we obtain the infinite numerical sequence:

1.4, 1.41, 1.414, 1.4142,
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Although we do not give a simple rule that would determine each
next term from the previous ones, it is still possible to define each
term of the sequence. For example, to obtain the 4th term, one needs
to represent with the precision of 0.0001, to obtain the 5-th term,
with the precision of 0.00001, and so on.

Suppose that the terms of an infinite numerical sequence

al, a2, a3, . . . ,

a certain number A as the index n increases indefinitely.
This means the following: there exists a certain number A such that
however small a positive number q we pick, it is possible to find a term
in the given sequence starting from which all terms of the sequence
would differ from A by less than q in the absolute value. We will
briefly express this property by saying that the absolute value of the
difference — A tends to 0) (or that the terms tend to A) as n
increases. In this case the number A is called the limit of a given
numerical sequence.

For example, consider thp sequence:

0.9, 0.99, 0.999,

where each term is obtained from the previous one by adding the
digit 9 on the right. It is easy to see that the terms of this sequence
tend to 1. Namely, the first term differs from 1 by 0.1, the second by
0.01, the third by 0.001, and continuing this sequence far enough, it
is possible to find a term, starting from which all the following terms
will differ from by no more than a quantity, picked beforehand, as
small as one wishes. Thus we can say that the infinite sequence in
question has the limit 1.

Another example of a numerical sequence which has a limit is
the sequence of consecutive approximations (say, from below) to the
length of a segment (fl51), computed with the precision of: first up
to 1/10, then up to 1/100, then up to 1/1000, and so on. The limit of
this sequence is the infinite decimal fraction representing the length
of the segment. Indeed, the infinite decimal fraction is enclosed be-
tween two finite decimal approximations: one from above the other
from below. As it was noted in §152, the difference between the
approximations tends to 0 as the precision improves. Therefore the
difference between the infinite fraction and the approximate values
must also tend to 0 as the precision improves. Thus the infinite dec-.
imal fraction is the limit of each of the two sequences of its finite
decimal approximations (one from above the other from below).
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It is easy to see that not every infinite sequence has a limit; for
instance, the natural series 1, 2, 3,4, 5,..., obviously, does not have
any limit since its terms increase indefinitely and therefore do not
approach any number.

228. Theorem. Any infinite sequence has at most one
limit.

This theorem is easily proved by reductio ad absurdum. Indeed,
suppose that we are given a sequence

a1, £13, ..., an,

which has two distinct limits A and B. Then, since A is a limit of
the given sequence, the absolute value of the difference an — A must
tend tq 0 as n increases. Since B is also a limit of the given sequence,
the absolute value of the difference — B must also tend to 0 as n
increases. Therefore the absolute value of the difference

(an — A) — (a,1 — B)

for n sufficiently large must also tend to 0, i.e. become smaller than
any number picked beforehand as small as one wishes. But this
difference is equal to the difference B — A, and therefore it is a certain
number different from 0. This number does not depend at all on the
index n, and hence does not tend to 0 when n increases. Thus our
assumption that there exist two limits of the numerical sequence
leads to a contradiction.

229. The limit of an increasing sequence. Consider a se-
quence ai, £13, ..., an, ..., such that each term of it is greater
than the previous one (i.e. £1n+1 > an), and at the same time all
terms of which are smaller than a certain number M (i.e. £1n C 1k!

for all values of the index n) In this case the sequence has a limit.
230. Proof. Let

a1, £12, £13, ..., an, ..., (*)

be a numerical sequence such that each term of it is greater than

the previous one (an+i > an), and such that among terms of this
sequence there is no one greater than a given number Al, say, there
is no term greater than 10. Take the number 9 and check if in the
sequence (*) there are terms greater than 9. Suppose that not. Then
take the number 8 and check if in the sequence (*) there are terms

greater than 8. Suppose there are. Then write down the number 8,
divide the interval from 8 to 9 into 10 equal parts, and test consec-
utively the numbers 8.1,8.2,.. .8.9, i.e. check if in the sequence (*)
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there are! terms greater than 8.1, and if yes, then decide the same
question for 8.2, etc. Suppose that the sequence (*) contains terms
greater than 8.6, but contains no terms greater than 8.7. Then write
down the number 8.6, divide the interval from 8.6 to 8.7 into 10
equal parts, and test consecutively the numbers 8.61,8.62,. . . 8.69.
Suppose that the sequence (*) contains terms greater than 8.64, but
contains no terms greater than 8.65. Then write down the number
8.64, and proceed by dividing the interval from 8.64 to 8.65 into 10
equal parts, etc. Continuing this process indefinitely we arrive at an
infinite decimal fraction: 8.64..., i.e. at a certain real number. De-
note this number by a, and denote its finite decimal approximations
with rt decimal places, from below and from above, by an and 4
respectively. As it is known

1
an a an, and — an

=

Prom our construction of the real number a, it follows that the se-
quence (*) contains no terms greater than 4 but contains terms
greater than an. Let ak be obe of such terms:

an <ak <4.

Since the sequence (*) is increasing and contains no terms greater
than 4, we find that all of the following terms of the sequence: ak+1,

are also contained between a71 and 4, i.e. if m> k, then
an <am <4.

Since the real number a is also contained between an and 4,
we conclude that for all in � k the absolute value of the difference
am — a does not exceed the difference 4 — an = i/ion. Thus, for
any value of n one can find the number k such that for all in � Ic we
have

1

Since the fraction i/10Th tends to 0 as n indefinitely increases, it
follows that the real number a is the limit of the sequence (*).

EXERCISES

485. Express precisely what one means by saying that terms an of
an infinite numerical sequence tend to a number A as it increases
indefinitely.
486. Show that the sequence: 1, 1/2, 1/3, ..., 1/n, ... tends to 0.
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487. Show that the sequence: 1, —1/2, 1/3, —1/4, ..., ±1/n,
tends to 0.
488. Show that the natural series 1, 2, 3, ..., n, ... does not have
a limit.
489. Show that the infinite sequence 1, —1, 1, —1, ... does not have
a limit.
490. Formulate the rule describing which of two given infinite deci-
mal fractions represents a gTeater number.
491. Which of the decimal fractions represents a greater number:
(a) 0.099999 or 0.1000007 (b) 0.099999... or 0.100000. . .7

492.* Prove that if an infinite numerical sequence tends to a certain
limit, then the sequence is bounded, i.e. all terms of the sequence
lie in a certain segment of the number line.
493. Prove that a decreasing numerical sequence bounded below
tends to a certain limit.
494. Show that an infinite geometric progression a, aq, aq2,
tends to 0 provided that the absolute value of q is smaller than 1.
495. An ant crawled 1 m first, then 1/2 m more, then 1/4 m more,
then 1/8 m more, etc. What is the total distance the ant crawled.
496.* Compute the sum of an infinite geometric progression a, aq,
aq2, ..., provided that the absolute value of q is smaller than 1.
Hint: First prove that the sum a + aq + aq2 + ... + a finite
geometric progTessiOn is equal to a(1 — qtt+')/(l — q).

3 Circumference and arc length

231. Two lemmas. The concept of limit gives us an opportunity
to define precisely what we mean by the length of a circle. Let us
first prove two lemmas.

Lemma 1. A convex broken tine (ABCD, Figure 237) is
shorter than any other broken tine (AEFGD) enclosing the
first one.

The expressions "enclosing broken line" and "enclosed broken
line" should be understood in the following sense. Let two broken
lines (like those shown in Figure 237) have the same endpoints A and
D and be situated in such a way that one broken line (ABCD) lies
inside the polygon bounded by the other broken line together with
the segment AD connecting the endpoints A and D. Then the outer
broken line is referred to as enclosing, and the inner one as enclosed.



200 Chapter 4. CIRCUMFERENCE

We intend to prove that the enclosed broken line ABCD, if it is
convex, is shorter than any enclosing broken line (no matter convex
or not), i.e. that

AB+BC+CD CAE+EF+FG+GD.

Extend the sides of the enclosed convex broken line as shown in
Figure 237. Then, taking into account that a straight segment is
shorter than any broken line connecting its endpoints, we can write
the following inequalities:

AB+BH < AE+EH;
BC+CK < BH+HF+FG+GK;

CD < CK+Ka
Add all these inequalities and then subtract from both parts the
auxiliary segments 13H and CIC. Then, replacing the sums EH+HF
and GK+KD respectively with the segments EF and GD, we obtain
the required inequality.

Remark. If the enclosed broken line were not convex (Figure 238),
we would not be able to apply our argument. The enclosed line in
this case can, indeed, turn out to be longer than the enclosing one.

Lemma 2. The perimeter of a convex polygon (ABCD) is
smaller than the perimeter of any other polygon (MNPQRL)
enclosing the first one (Figure 239).

It is required to prove that

AB+BC+CD+DA< LM-FMN+NP-FPQ+QR+RL.

Extending one of the sides AD of the enclosed convex polygon in
both directions, and applying the previous lemma to the broken lines

Figure 237 Figure 238
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ABCD and ATMNPQRSD, connecting the points A and D, we
obtain the inequality:

AB+BCC AT+TM+MN+NP+PQ+QR+RS+SD.
On the other hand, since the segment ST is shorter than the broken
line SLT, we can write:

TA+AD+DSCTL+LS.
Add the two inequalities and subtract the auxiliary segments AT
and DS from both parts. Then, replacing the sums TL + TM and
LS + RS respectively with the segments LIV! and LR, we obtain the
required inequality.

M

L

232. Definition of circumference. Inscribe into a given circle
(Figure 240) a regular polygon, e.g. a hexagon, and mark on any
line MN (Figure 241) the segment OP1 congruent to the perimeter
of this polygon.2 Now double the number of sides of the inscribed
polygon, i.e. replace the hexagon with the regular 12-gon, find its
perimeter and mark it on the same line MN from the same point
0. We obtain another segment OP2, greater than OP1 since each
side of the hexagon is now replaced with a broken line (consisting
of two sides of 12-gon), which is longer than the straight line.
Now double the number of sides of the 12-gon, i.e. take the regular
24-gon (not shown in Figure 240), find its perimeter, and mark it on
the line MN from the same point 0. We then obtain the segment
OF3, which will be greater than OP2 (for the same reason that OP2
is greater than 013).

2One may choose a unit of length and think of MN as a number line.

Q

Figure 239 Figure 240
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Imagine now that this process of doubling the number of sides of
regular polygons and marking their perimeters on a line is contin-
ued indefinitely. Then we obtain an infinite sequence of perimeters
0P1, 0P3, ..., which increases. However this increasing se-
quence is bounded, since perimeters of all inscribed convex polygons
are smaller, according to Lemma 2, than the perimeter of any cir-
cumscribed polygon (as enclosing the inscribed ones). Therefore our
increasing sequence of perimeters of inscribed regular polygons has a
certain limit This limit (shown in Figure 241 as the segment
OP) is taken for the circumference. Thus, we define the circum-
ference of a circle as the limit to which the perimeter of a regular
polygon inscribed into the circle tends as the number of its vertices
is doubled indefinitely.

M N

0 P7 P2P3P

Figure 241

Remark. It is possible to prove (although we omit the proof)
that this limit does not depend on the regular polygon the doubling

procedure begins with. Moreover, it is possible to prove that even
if the inscribed polygons are not regular, still their perimeters tend

to the very same limit as the perimeters of the regular ones, if only
their sides decrease indefinitely (and therefore the number of their
sides indefinitely increases), no matter how this is achieved: by the
doubling procedure we were using for regular polygons, or by any
other rule. Thus, for any circle there exists a unique limit to which
perimeters of inscribed polygons tend when all their sides decrease
indefinitely, and this limit is taken for the circumference.

Similarly, the arc length of any arc AB (Figure 242) is defined
as the limit to which the perimeter of a broken line, inscribed into the

arc and connecting its endpoints A and B, tends when the sides of

the broken line decrease indefinitely (e.g. by following the doubling

procedure).

233. Properties of arc length. From the definition of arc

length, we conclude:

(1) Congruent arcs (and congruent circles) have equal arc length,
because the regular polygons inscribed into them, can be chosen
congruent to each other.

(2) The arc length of the sum of arcs is equal to the sum of their
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arc lengths.
Indeed, if s is the sum of two arcs s' and s", then the broken line

inscribed into the arc s can be chosen consisting of two broken lines:
one inscribed into s', the other into a". Then the limit to which the
perimeter of such a broken line inscribed into a tends, as the sides of
it indefinitely decrease, will be equal to the sum of the limits to which
the perimeters of the broken lines inscribed into s' and s" tend.

C,

(3) The arc length of any arc (ACB, Figure 242) is greater than
the length of the chord AB connecting its endpoints, and more gener-
ally, than the perimeter of any convex broken line inscribed into the
arc and connecting its endpoints.

Indeed, by doubling the number of sides of the broken line and
marking the perimeters on a number line we obtain an infinite se-
quence, which tends to the arc length, and is increasiitg. Therefore
the arc length is greater than any of the terms of the sequence (in
particular, than the first one of them, which is the length of the
chord).

(4) The arc length is smaller than the perimeter of any broken
line circumscribed about the arc and connecting its endpoints.

Indeed, the length L of the arc ACE (Figure 242) is the limit of
the perimeters of regular broken lines ACE, ADCEB, etc. inscribed
into the arc and obtained by the method of doubling. Each of these
broken lines is convex and is enclosed by any circumscribed broken
line AC'D'B connecting the endpoints of the arc. Thus, by Lemma
1, the perimeters of the inscribed broken lines are smaller than the
perimeter P of the circumscribed broken line, and therefore their
limit L cannot exceed the perimeter P as well, i.e. L C P. Tn fact the
same inequality will remain true if we replace the broken line AC'D'B
with a shorter broken line still enclosing the disk segment ACE. It
is shown in Figure 243 how to construct such a shorter broken line
by cutting the corner near one of the vertices (i.e. replacing the part

C

A B

Figure 242 Figure 243
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ACE between two consecutive tangency points by the shorter broken
line AMNE). Therefore the arc length L is in fact strictly smaller
than the perimeter P of the circumscribed broken line, i.e. L < P.

234. The number it. The ratio of the circumference to
the diameter is the same number for all circles.

Indeed, consider two circles: one of radius R, the other of radius
r. Denote the circumference of the first circle C, and the second c.
Inscribe into each of them a regular n-gon and denote Pm and p,,, the
respective perimeters. Due to similarity of regular polygons with the
same number of sides, we have (see §220):

Pm Pm (*)

When the number n of sides doubles indefinitely, the perimeters
tend to the circumference C of the first circle, and the perimeters

to the circumference c of the second. Therefore the equality (*)
implies:

2R —

This ratio of circumference to diameter, the same for all circles,
is denoted by the Greek letter it. Thus we can write the following
formula for circumference:

orC=2itR.

It is known that the number it is irrational and cannot
be expressed precisely by a fraction. However one can find rational
approximations of it.

The following simple approximation of it, found by Archimedes
in the 3rd century B.C., is sufficient for many practical purposes:

it = = 3.142857142857...

It is slightly greater than it, but by no more than 0.002. The Greek
astronomer Ptolemy (in about 150 A.D.), and the author of "Al-
jabra," al-Khwarizmi of Baghdad (in about 800 AD.) found the ap-
proximation it 3.1416 with the error of less than 0.0001. A Chinese

'The notation which became standard soon after it was adopted by L. Euler
in 1737, comes from the first letter in the Greek word ircpt4'cpaa meaning circle.
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mathematician Zn Chongzhi (430—501) discovered that the following
fraction:

approximates 'it from above with the remarkable precision of up to
0.0000005. "

235. A method of computation of it. To compute approx-
imations to the number it, one can use the doubling formula we
derived in §224. For simplicity, take the radius 1? of a regular m-gon
equal to 1. Let denote the side of the m-gon, and = its
semi-perimeter, which tends therefore to it as the number of sides is
doubled indefinitely. According to the doubling formula,

We can begin the computation with a6 = 1 (i.e. = 3). Then the
doubling formula yields (see §224):

= 2— \/ä= 0.26794919...

Using the doubling formula we then consecutively compute:

=2_Wi— and soon.

Suppose that we stop the doubling at the 96-gon, and take its semi-
perimeter q95/2 = 48a96 for an approximate value of it. Performing
the computation, we find:

it q96 = 3.1410319...

In order to judge the precision of this approximation, let us also
compute the semi-perimeter Q96 of the 96-gon circumscribed about
the circle of the unit radius. Applying the formula for the side of
circumscribed regular polygons found in § 220, and setting R = I we
get:

a95 . q96b95= ,
2— —

41n 1883, an Englishman W. Shanks published his computation of it with 707
decimal places. It held the record until 1945, when the first 2000 places were
found using computers, and it turned out that Shanks had made a mistake which
ruined his results starting with the 528th decimal place.
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Substituting numerical values of and we find:

= 3.1427146...

A semicircle is greater than the semi-perimeter of the inscribed reg-
ular 96-gon, but smaller than the semi-perimeter of the circum-
scribed regular 96-gon: < Thus we can conclude that
3.141 <ir <3.143. In particular, we find the decimal approximation
to ir from below true to two decimal places:

ir 3.14.

More precise approximations of ir can be found by using the same
method of doubling for computing q192 and Q192, q354 and and
so on. For instance, to obtain the approximation from below

3.141592...

true to 6 decimal places, i.e. with the precision of up to 0.00000 1, it
suffices to compute semi-perimeters of regular inscribed and circum-
scribed polygons with 6144 sIdes (which are obtained from hexagons
by 10 doublings).

236. Radian. In some problems, the number inverse to ir occurs:

= 0.3183098...

Problem. Determine the number of degrees in an arc whose arc
length is equal to the radius.

The formula 2irR for circumference of a circle of radius R means
that the arc length of one degree is equal to 2irR/360 = rrR/180.
Therefore an arc of n degrees has the arc length

'irRn

When the arc length is equal to the radius, i.e & = R, we obtain the
equation 1 = irn/180, from which we find:

= 1180° 180° . 0.3183098 57.295764°

An arc whose arc length is equal to the radius is called a radian.
Radians are often used (instead of circular and angular degrees) as
units for measuring arcs and corresponding central angles. For in-
stance, the full angle contains 360° or 2ir radians.
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EXERCISES

497. Compute the length of the arcs of the unit radius subtended
by the chords: (a) units long; (b) units long.
498. Compute the radian measure of the angles containing: 60°, 45°,
12°.

499. Express in radians the sum of the interior angles of an n-gon.
500. Express in radians the exterior and interior angles of a regular
n-gon.
501. How many degrees are contained in the angle whose radian
measure is: ir, ir/2, ir/6, 3ir/4, 7r/5, ir/9?
502. Compute the values of the trigonometric functions sin a, cos a,
tan a, and cot a for the angles a = ir/6, ir/4, ir/3, 7r/2, 2ir/3, 3ir/4,
5ir/6, ir radians.
503.* Prove that sina C a < tana for 0 < a < ir/2, where a
denotes the radian measure of the angle.
504. Prove that in two circles, the ratio of central angles correspond-
ing to two arcs of the same arc length is equal to the inverse ratio of
the radii.
505. Two tangent lines at the endpoints of a given arc containing
120° are drawn, and a circle is inscribed into the figure bounded by
these tangent lines and the arc. Prove that the circumference of this
circle is equal to the arc length of the given arc.
506. In a circle, the arc subtended by a chord of length a is congruent
to twice the arc subtended by a chord of length b. Compute the radius
of the circle. -

507. Prove that the side a n-gon tends to 0 as the
number of sides increases indefinitely.
508. On the diameter of a given semicircle, inside the disk segment
bounded by the diameter and the semicircle, two congruent semicir-
des tangent to each other are constructed. Into the part of the plane
bounded by the three semicircles, a disk is inscribed. Prove that the
ratio of the diameter of this disk to the diameter of the constructed
sernicircles is equal to 2 : 3.
509. How small will the error be if instead of semi-circumference we
take the sum of the side of an inscribed equilateral triangle and the
side of an inscribed square?
510. Estimate the length of the Earth's equator, taking the Earth's
radius to be 6400 km.
511. Estimate the length of 1° of the Earth's equator.



208 Ghapter 4. GIRCUMFERENGE

512. A round rope, which is 1 m longer than the Earth's equator, is
stretched around the equator at a constant height above the Earth's
surface. Can a cat squeeze itself between the rope and the Earth's
surface?

Suppose now that the same rope is stretched around the equa-
tor and pulled up at one point as high as possible above the Earth's
surface. Can an elephant pass under the rope?



Chapter 5

AREAS

1 Areas of polygons

237. The concept of area. We all have some idea about the
quantity called area, from everyday life. For example, the harvest a
farmer expects to collect from a piece of land depends not so much
on the shape of the piece, but only on the size of land surface that
the farmer cultivates. Likewise, to determine the amount of paint
needed to paint a surface, it suffices to know the overall size of the
surface rather than the exact shape of it.

We will establish here more precisely the concept of area of geo-
metric figures, and develop methods for its computation.

238. Main assumptions about -areas. We will assume that
the area of a geometric figure is a quantity, expressed by positive
numbers, and is well-defined for every polygon. We further assume
that the areas of figures possess the following properties:

(1) Congruent figures have equal areas. Figures of equal area are
sometimes called equivalent. Thus, according to this property of
areas, congruent figures are equivalent. The converse can be false:
equivalent figures are not always congruent.

(2) If a given figure is partitioned into several parts (M, N, F,
Figure 244), then the number expressing the area of the whole figure
is equal to the sum of the numbers expressing the areas of the parts.
This property of areas is called additivity. It implies, that the area
of any polygon is greater than the area of any other polygon enclosed
by it. Indeed, the difference between the areas of the enclosing and
enclosed polygons is positive since it represents the area of a figure
(namely of the remaining part of the enclosing polygon, which can

209
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always be partitioned into several polygons).
(3) The square, whose side is a unit of length, is taken for the

unit of area, i.e. the number expressing the area of such a square is
set to 1. Of course, which squares have unit areas depends on the
unit of length. When the unit of length is taken to be, say, 1 meter
(centimeter, foot, inch, etc.), the unit square of the corresponding
size is said to have the area of 1 square meter (respectively square
centimeter, square foot, square inch, etc.), which is abbreviated as
1 7712 (respectively cm2, ft2, in2, etc.)

239. Mensuration of areas. Area of some simple figures can
be measured by counting the number of times the unit square fits
into the figure. For example, let the figure in question be drawn
on grid paper (Figure 245) made of unit squares, and suppose that
the boundary of the given figure is a closed broken line whose sides
coincide with the edges of the grid. Then the whole number of unit
squares lying inside the figure gives the exact measure of the area.

In general, measuring areas is done not by direct counting of unit
squares or their parts fitting into the measured figure, but indirectly,
by means of measuring certain linear sizes of the figure, as it will be
explained soon.

240. Base and altitude. Let us agree to call one of the sides of
a triangle or parallelogram the base of these figures, and a perpen-
dicular dropped to this side from the vertex of the triangle, or from
any point of the opposite side of the parallelogram, the altitude.

In a rectangle, the side perpendicular to the base can be taken
for the altitude.

In a trapezoid, both parallel sides are called bases, and a common
perpendicular between them, an altitude.

The base and the altitude of a rectangle are called its dimen-
sions.

rigure 244 Figure 245
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241. Theorem. The area of a rectangle is the product of
its dimensions.

This brief formulation should be understood in the following way:
the number expressing the area of a rectangle in certain square units
is equal to the product of the numbers expressing the length of the
base and the altitude of the rectangle in the corresponding linear
units.

In the proof of this theorem, three cases can occur:
(i) The lengths of the base and the altitude (measured by the

same unit) are expressed by whole numbers.
Let a given rectangle (Figure 246) have the base equal to b linear

units, and the altitude to Ii such units. Divide the base and the
altitude into respectively 5 and h congruent parts, and draw through
the division points two series of lines parallel respectively to the
altitude and the base. Mutual intersections of these lines partition
the rectangle into quadrilaterals. In fact each of these quadrilaterals
(e.g. K) is congruent to the unit square. (Indeed, since the sides of
K are parallel to the sides of the rectangle, then all angles of K are
right; and the lengths of the sides of K are equal to the distances
between the parallel lines, i.e. to the same linear unit.) Thus the
rectangle is partitioned into squares of unit area each, and it remains
to find the number of these squares. Obviously, the series of lines
parallel to the base divides the rectangle into as many rectangular
strips as there are linear units in the altitude, i.e. into h congruent
strips. Likewise, the series of lines parallel to the altitude divides
each of the strips into as many unit squares as there are linear units
in the base, i.e. into S such squares.- Therefore the total number of
squares is S x h. Thus

the area of a rectangle = bh,

i.e. it is equal to the product of the base and the altitude.
(ii) The length of the base and the altitude (measured by the

same unit) are expressed by fractions.
Suppose, for example, that in a given rectangle:

base = 4 = linear units,

altitude = 4— = — of the same linear units.

Bringing the fractions to a common denominator, we obtain:
35 46

base = altitude =
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Let us take the part of the linear unit for a new unit of length.
Then we can say that the base contains 35 such units, and the altitude
46. Thus, by the result of case (1), the area of the rectangle is equal
to 35 x 46 square units corresponding to the new unit of length. But
this square unit is equivalent to the thth part of the square unit
corresponding to the original unit of length. Therefore the area of
the rectangle, expressed in the original square units, is equal to

35x46 35 46 (i\ (3
Tho

(iii) The base and the altitude (or only one of these dimensions)

are incommensurable with the unit of length, and therefore are ex-
pressed by irrational numbers.

C',

I I I I I I I I
D C

C,

f3

aI

b A B'BB"

Figure 246 Figure 247

For all practical purposes it suffices to use approximate values of

the area computed with any desired precision. It is possible however
to show that in this case too, the precise value of the area of the
rectangle is equal to the product of its dimensions.

Indeed, let the lengths of the base AB and the altitude AD of a
rectangle ABCD (Figure 247) be expressed by real numbers a and /3.
Let us find the approximate values of a and /3 with the precision of
up to 1/n. For this, mark on the base AB the *th part of the linear
unit as many times as possible. Suppose, that marking m such parts,
we obtain a segment AB' <AB (or AB' = AB), and marking in+1
such parts, we obtain a segment AB" > AB. Then the fractions
and will be the approximations of a respectively from below
and from above, with the required precision. Furthermore, suppose
that by marking on AD the part of the unit p and p + I times,
we obtain the segments respectively AD' <AD (or AD' = AD) and

h
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AD" > AD, and thus find the approximations� < to the
length j3 of the altitude. Construct two auxiliary rectangles AB'C'D'
and AB"C"D". The dimensions of each of them are expressed by
rational numbers. Therefore, by case (ii): the area of AB'C'D' is
equal to x and the area of AB"C"D" is equal to x
Since ABCD encloses AB'C'D' and is enclosed by AB"C"D", we
have:

area of AB'C'JY <area of ABCD <area of AB"C"D'ç
rn p m+1 p+l

i.e. —x--<areaofABCD<
Ti Ti Ti it

This inequality holds true for any value of it, i.e. with whatever
precision we choose to approximate a and j3. Let us first take it = 10,
then it = 100, then it = 1000, etc. We will obtain the fractions
and which provide better and better decimal approximations of the
numbers a and from below, and the fractions and which
provide better and better approximations of the numbers a and $
from above. It is not hard to see that their products become better
and better approximations, from below and from above, of the same
infinite decimal fraction.1 The latter decimal fraction represents the
real number called the product of the real numbers a and fi. Thus,
we conclude that the area of ABCD is equal to a/3.

242. Theorem. The area of a parallelogram (ABCD, Figure
248) is equal to the product of the base and the altitude.

Figure 248

1lndeed, the difference

n It Viii I? iik\fl Vi

tends to zero as n increases indefinitely.
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On the base AD, construct the rectangle AEFD, whose side EF
extends the side BC of the parallelogram, and prove (in both cases
shown in Figure 248), that

area of ABCD = area of AEFD.

Namely, combining the parallelogram with the triangle AEB, and
the rectangle with the triangle DFC, we obtain the same trapezoid
AECD. The triangles AEB and DFC are congruent (by the SAS-
test, since AE = DF, AB = DC, and ZEAB = ZLFDC), they are
equivalent, and therefore the parallelogram and the rectangle have
to be equivalent as well. But the area of AEFD is equal to bh,
and hence the area of ABCD is equal to bh as well, where b can be
considered as the base, and h as the altitude of the parallelogram.

243. Theorem. The area of a triangle (ABC, Figure 249) is
equal to half the product of the base and the altitude.

B B

L

A C

Figure 249 Figure 250

Drawing BDIIAC and CDIIAB, we obtain the parallelogram
ABDC whose area, by the previous theorem, is equal to the product
of the base and the altitude. But the parallelogram consists of two
congruent triangles, one of which is LIABC. Thus

area of AABC =

Remark. Figure 250 shows how to rearrange parts of a triangle
ABC to form the rectangle AKLC with the same base b as the
triangle, and the altitude h/2 congruent to a half of the altitude of
the triangle.

- 244. Corollaries. (1) Triangles wit/i congruent bases and con-
gruent altitudes are equivalent.

D

b C A b



1. Areas of polygons 215

For example, if we will move the vertex B of the triangle ABC
(Figure 251) along the line parallel to the base AC, leaving the base
unchanged, then the area of the triangle will remain constant.

(2) The area of a right triangle is equal to half the product of its
legs, because one of the legs can be taken for the base, the other for
the altitude.

ci

(3) The area of a rhombus is equal to half the product of its diago-
nals. Indeed, if ABCD (Figure 252) is a rhombus, then its diagonals
are perpendicular. Therefore

area of = OB, of = OD,

i.e. areaofABCD

245. Theorem. The area of a trapezoid is equal to the
product of the altitude and the semi-sum of the bases.

Drawing in the trapezoid ABCD (Figure 253) the diagonal AC,
we can consider the area of the trapezoid as the sum of areas of the
triangles ACD and BAC. Therefore

area of ABCD=

B

B

Figure Figure 254
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246. Corollary. If MN (Figure 254) is the midline of the trape-
zoid ABCD, then (as it is known from §97) it is congruent to the
semi-sum of the bases. Therefore

area of ABCD = h,

i.e. the area of a trapezoid is equal to the product of the midline with
the altitude.

This can also be seen directly from Figure 254.
247. Remark. In order to find the area of an arbitrary polygon,

one can partition it into triangles, compute the area of each triangle,
and add the results.

EXERCISES

Prove theorems:
514. In a parallelogram, the distances from any point of a diagonal
to two adjacent sides are inversely proportional to these sides.
515. A convex quadrilateral each of whose diagonals divides it into
two equivalent triangles, is a parallelogram.
516. In a trapezoid partitioned into four triangles by the diagonals,
the triangles adjacent to the lateral sides are equivalent.
517. The area of a trapezoid is equal to the product of one of the
lateral sides and the perpendicular, dropped to this side from the
midpoint of the other lateral side.
518. A triangle with the altitudes 12, 15, and 20 cm is right.
519. The parallelogram obtained from intersection of the lines con-
necting each vertex of a given parallelogram with the midpoint of
the next side is equivalent to 1/5th of the given parallelogram.
520.* If the medians of one triangle are taken for the sides of another,
then the area of the latter triangle is equal to 3/4 of the area of the
former one.
521 In a quadrilateral ABCD, through the midpoint of the diago-
nal BD, the line parallel to the diagonal AC is drawn. Suppose that
this line intersects the side AD at a point E. Prove that the line CE
bisects the area of the quadrilateral.

Computation problems

522. In a square with the side a, midpoints of adjacent sides are
connected to each other and to the opposite vertex. Compute the
area of the triangle thus formed.
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523. Two equilateral triangles are inscribed into a circle of radius 1?
in such a way that each of the sides is divided by the intersections
with the sides of the other triangle into 3 congruent parts. Compute
the area of the common part of these triangles.
524. Compute the area of a right triangle, if the bisector of an acute
angle divides the opposite leg into segments of lengths 4 and 5.
525. Compute the area of a trapezoid with angles 60° and 90°, given:
(a) both bases, (b) one base and the lateral side perpendicular to the
bases, (c) one base and the other lateral side.
526. Given the bases and the altitude of a trapezoid, compute the
altitude of the triangle formed by the extensions of the lateral sides
up to the point of their intersection.
527.* Compute the area of an isosceles trapezoid with perpendicular
diagonals, if the midline is given.
528.* Compute the ratio of the area of a triangle to the area of
another triangle whose sides are congruent to the medians of the
former triangle.
529. Into a triangle of unit area, another triangle, formed by the
midlines of the first triangle, is inscribed. Into the second triangle, a
third triangle, formed by the midlines of the second one, is inscribed.
Into the third triangle, a fourth one is inscribed in the same fashion,
and so on indefinitely. Find the limit of the sum of the areas of these
triangles.
Hint: First compute the sum of the areas after finitely many steps.

Construction problems

530. Through a vertex of a triangle, draw two lines which divide the
area in a given proportion : n p.
531. Bisect the area of a triangle by a line passing through a given
point on its side.
532. Find a point inside a triangle such that the lines connecting the
point with the vertices divide the area of the triangle (a) into three
equal parts; (b) in a given proportion m : n : p.
533. Divide a parallelogram into three equivalent parts by lines
drawn from one of its vertices.
534. Divide the area of a parallelogram in a given proportion m : n
by a line passing through a given point.
Hint: Divide a midline of the parallelogram in the given proportion,
and connect the division point with the given one.
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2 Several formulas for areas of triangles

248. TheoremS The area of any circumscribed polygon is
equal to the product of the semi-perimeter of the polygon
and the radius.

Connecting the center 0 (Figure 255) with all vertices of the
circumscribed polygon, we partition it into triangles, in which sides
of the polygon can be taken for the bases, and radii for the altitudes.
If r denotes the radius, then

area of AAOB = r, area of ABOC = etc.

i.e.

where letter q denotes the semi-perimeter of the polygon.

B A

D

C

Figure 25S

Corollaries. (1) The area of a regular polygon is equal to the
product of the semi-perimeter and the apothem, because any regular

polygon can be considered as circumscribed about a circle the radius
of which is the apothem of the polygon.

(2) The area 8 of any triangle is equal to the product of its semi-
perimeter q and the radius r of the inscribed circle:

8 = qr.

249. Problem. To compute the area 8 of a triangle, given the
lengths a, b, and c of its sides.

Let ha denote the altitude of ABC (Figure 256) dropped to its
side a. Then

1
8= -a/ia.

E

Figure 256
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In order to compute the altitude ha, we use the relation

') 2 /lr=a+c —2ac,

and determine from it c':

/ a2+c2—b2
C = ---S

From the right triangle ADE, we find:

ha =
— +c2— b2)2 = — (a2 + C2 — 52)2

!hansfornl the expression under the square root sign:

(2ac)2 — (a2 + c2 — b2)2 = (2ac+ a2 + c2 — 52)(2ac — a2 — c2 + b2)

={(a2+c2+2ac)—b2][b2—(a2+c2—2ac)]

= [(a+c)2— 52][52 (a—c)2]

=(a+c+b)(a+c—b)(b+a—c)(b—a+c).

Therefore 2

8= = + b + c)(a ± b — c)(a + c — b)(b + c — a).

Let q = (a + b + c)/2 denote the semi-perimeter of the triangle. Then

a+c—b= (a+b+c)—2b=2q—2b=2(q—b),

and similarly

a+b—c=2(q—c), b+c—a=2(q—a).

Thus

8= 2(q 2(q -

8=
The last expression is known as Heron's formula after Heron of
Alexandria who lived in the 1st century A.D.

2Since any side of a triangle is smafler than the sum of the other two sides,
the factors under the square root sign are positive.
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Example. The area of an equilateral triangle with the side a is
given by the formula

/3a a a a

250. The law of sines33
Theorem. The area of a triangle is equal to half the prod-

uct of any two of its sides and the sine of the angle between
them.

Indeed, the altitude ha (Figure 257) of AABC can be expressed
as ha = b sin C, and therefore the area S of the triangle is given by
the formula

S =

The following corollary is called the law of sines.
Corollary. Sides of a triangle are proportional to the sines of

the angles opposite to them:

a b — c

sinA — sinB — sinC

Indeed, from the theorem, we compute sin C = 25/ab, and find the
ratio

c abc

sinC 28
It follows that the ratio is the same for all three sides of the triangle.

C4B
Figure 257 Figure 258

- The following theorem provides another proof of the law of sines.

3See also ExeFcises in Section 7 of Chapter 3.
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Theorem. Any side of a triangle is equal to the product
of the sine of the opposite angle and the diameter of the
circumscribed circle.

Let 0 (Figure 258) he the center of the circle circumscribed about
and OD the perpendicular bisector of the side AR. The

central angles A0D and ROD are congruent to each other and to
ZC (because they are all measured by a half of the arc ADD). Since
AO = OR = R (where by 1? we denote the radius of the circle), then
AD = DR = RsinC, i.e.

c = AD = 2Rsina

Corollaries. (1) The ratio of any side of a triangle to the sine
of the opposite angle, is equal to the diameter of the circumscribed
circle:

a b — c
—2R

sinA — sinB — sinC —

(2) Comparing two expressions for the ratio c/ sin C, we obtain
a simple formula expressing the area S of a triangle through its sides
a, b, c and the radius R of the circumscribed circle:

abc

EXERCISES

Prove theorems:

535. The area of any quadrilateral is equai to half the product of its
diagonals and the sine of the angle between them.

536. If the areas of two triangles, adjacent to the bases of a trapezoid

and formed by the intersection of the diagonals, are equal to a2 and b2

respectively, then the area of the whole trapezoid is equal to (a+ b)2.

537. The area S of a triangle with the sides a, b, c and the semi-

perimeter q can be expressed as

S = (q — a)ra = (q — b)rb = (q —

where ra, and are radii of the exscribed circles tangent to the

sides a, b, and c respectively.
538. Prove that the radii ra, r and

of a triangle satisfy: 1/ra + 1/rb + 1/re = 1/r.
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539. The medians of a given triangle divide it into six triangles, out
of which two adjacent to one side of the given triangle turned out
to have congruent inscribed circles. Prove that the given triangle is
isosceles.

540. A line dividing a given triangle into two figures which have
equal areas and congruent perimeters, passes through the incenter.

541. In a convex equilateral polygon, the sum of distances from an
interior point to the sides or their extensions does not depend on the
point.

542.* In an equiangular polygon, the sum of distances from an inte-
rior point to the sides or their extensions is a quantity independent
of the position of the point in the polygon.
543* The sum of the squares of the distances from a point on a
circle to the vertices of an inscribed equilateral triangle is a quantity
independent of the position of the point on the circle.

Computation problems

544. Compute the area of a regular hexagon with the side a.

545. Compute the area of a regular 12-gon of radius R.

546. A disk inscribed into an isosceles trapezoid touches a lateral
side at a point dividing it into segments m and it. Compute the area
of the trapezoid.

547. Express the radius of the circumscribed circle of a triangle in
terms of two sides of the triangle and the altitude dropped to the
third side.

548. Three circles of radii 6, 7, and 8 cm are pairwise tangent to
each other. Compute the area of the triangle formed by the three
lines of centers.

549. Express the common chord of two intersecting circles in terms
of their radii and the line of centers.

550. Express the radius of the inscribed circle of a triangle, and each
of its exscribed circles, through the sides of the triangle.

551. Express the radius of the circumscribed circle of a triangle
through the sides.

552. If the lengths a, b, c of the sides of a triangle form an arith-
mètic sequence, then ac = 6Rr, where R and r are the radii of the
circumscribed and inscribed circles respectively.



3. Areas of similar figures -

3 Areas of similar figures
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251. Theorem. Areas of similar triangles or polygons are
proportional to the squares of homologous sides.

(I) If ABC and A'B'C' (Figure 259) are two similar triangles,
then their areas are equal to respectively ah/2 and a'h'/2, where a
and a' are lengths of the homologous sides BC and B'Cç and h and

are the homologous altitudes AD and A'D'.
The altitudes are proportional to the homologous sides: h : h' =

a: a' (since from similarity of the right triangles ADB and A'D'B',
we have h: h' = c: = a: a'). Therefore

area of ABC — ah — a h a a a2

area of A'B'C' — a'h' — a' h' = a' a' =

Figure 259

(ii) If ABCDE and A'B'C'D'E' (Figure 260) are two similar
polygons, then it is possible, as we have seen in §168, to partition
them into respectively similar triangles positioned in the same way.
Let these triangles be: AOB and A'O'Bç BOC and B'O'C', etc.
According to the result of part (i), we have the following proportions:

areaofAOB (AB\ areaofBOC (BC\
area of A'O'B' = area of B'O'C' =

etc.

But from the similarity of the polygons, we have:

AB BC
and hence

(BC\2

B C

Figure 260
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area of AOB — area of BOC
area of A'O'Pi — area of WQIC' =

E\'om properties of proportions (see Remark in §169), we conclude:

area of AQE + areaofEQC +
area of A'Q'B' + area of B'O"C' +

area of ABCDE
i.e.

area of A'B'C'D'E'

— area of AOB
area of A'O'B"

AD2
(AT')2

Corollary. Areas of regular polygons with the same number of
sides are proportional to the squares of their sides, or squares of their
radii, or squares of their apothems.

252. Problem. To divide a given triangle into in equivalent parts
by lines parallel to one of its sides.

A

Figure 261

Suppose, for example, that it is required to divide AABC (Figure
261) into three equivalent parts by segments parallel to AC. Suppose
that the required segments are DE and FC. The triangles DEE,
FEC, and ABC are similar. Therefore

But

Therefore

area of DEE —
d

area of FEC — BC2
area of ABC — BC2

an
area of ABC — BC2

area of DEE 1 area of FEC 2—=—and——-area of ABC 3 area of ABC 3

BE2 1 BC2 2
and

Q

C
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From this, we find:

BE= and BG=

i.e. BE is the geometric mean between BC and BC
and §BC. Therefore the required

construction can be done as follows. Divide BC into 3 congruent
parts at the points iv! and N. Describe the semicircle on BC as
the diameter. From the points A/I and N, erect the perpendiculars
MP and NQ. The chords BP and BQ will be the geometric means
needed: the first one between the diameter BC and its third part
BA'!, the second one between BC and BN, i.e. between BC and
§BC. It remains to mark these chords on BC starting from the
point B to obtain the required points E and C.

One can similarly divide the triangle into any number of equiva-
lent parts.

EXERCISES

Computation problems

553. A line parallel to the base of a triangle divides its area in the
proportion 4 : 5 counting from the vertex. In what proportion does
it divide the lateral sides?
554. Each median of a triangle is divided in the proportion 3 : I
counting from the vertex. the ratio of the area of the
triangle with the vertices at the division points, to the area of the
original triangle.

Among rectangles of a fixed area, find the one with the minimal
perimeter.

Construction problems

556. Divide a parallelogram into three equivalent parts by lines par-
allel to one of the diagonals.
557. Divide the area of a triangle in the extreme and mean ratio by
a line parallel to the base.
Hint: Apply the algebraic method.
558.* Divide a triangle into three equivalent parts by lines perpen-
dicular to the base.
559. Bisect the area of a trapezoid by a line parallel to the bases.
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560. On a given base, construct a rectangle equivalent to a given
one.

561. Construct a square equivalent to 2/3 of the given one.
562. Transform a given square into an equivalent rectangle with a
given sum (or difference) of two adjacent sides.
568. Given two triangles, construct a third one, similar to the first,
and equivalent to the second.
564. Transform a given triangle into an equivalent equilateral one.
Hint: Apply the algebraic method.
565. Into a given disk, inscribe a rectangle of a given area a2.
566. Into a given triangle, inscribe a rectangle of a given area S.

4 Areas of disks and sectors

253. Lemma. Under unlimited doubling of the number of
sides of an inscribed regular polygon, its side decreases in-
definitely.

Let n be the number of sides of an inscribed regular polygon, and
p its perimeter. Then the length of one of its sides is expressed by
the ratio p/n. Under unlimited doubling of the number of sides of
the polygon, the denominator n of this ratio will increase indefinitely,
and the numerator p will also increase, though not indefinitely (since
the perimeter of any convex inscribed polygon remains smaller than
the perimeter P of any fixed circumscribed polygon). A ratio, whose
numerator remains bounded, and denominator increases indefinitely,
tends to zero. Therefore the side of the inscribed regular polygon
indefinitely decreases as n indefinitely increases.

254. Corollary. Let AB (Figure 262) be a side of an inscribed
regular polygon, 0A the radius, and 00 the apothem. From
we find:

OA-OCcAC, i.e.

Since the side of the regular polygon, as we have just proved, de-
creases indefinitely when the number of sides is doubled an unlimited
number of times, then the same is true for the difference GA — 00.
Therefore, under unlimited doubling of the number of sides of the in-
sen bed regular polygon, the length of the apothem tends to the radius.

- 255. The area of a disk. Into a disk, whose radius we denote
R, inscribe any regular polygon. Let the area of this polygon be 5,
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semi-perimeter q, and apothem r. We have seen in §248 that

S=qr.

Imagine nosy that the number of sides of this polygon is doubled
indefinitely. Then the semi-perimeter q and the apothem r (and
hence the area 8) will increase. The semi-perimeter will tend to
the limit C/2 equal to the semi-circumference of the circle, and the
apothern r will tend to the limit equal to the radius IL It follows
that the area of the polygon will tend to the limit equal to . R.

Definition. The limit, to which the area of a regular polygon
inscribed into a given disk tends as the number of sides of the polygon
is doubled indefinitely, is taken for the area of the disk.

Let us denote by A the area of the disk. We conclude therefore,
that

i.e. the area of a disk is equal to the product of the semi-
circumference and the radius.

Since C = 2irR, then

A=

i.e. the area of a disk of radius R is equal to the square of
the radius multiplied by the ratio of the circumference to
the diameter.

Corollary. Areas of disks are proportional to the squares of
their radii or diameters.

Figure 262 Figure 263
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Indeed, if A and A' denote areas of two disks of radii R and R'
respectively, then A = and A' = ir(R')2. Therefore

A irR2 4R2 (2R)2
A' = ir(R')2 = (R')2 = 4(R')2 =

256. Area of a sector. The area of a sector is equal to
half the product of its arc length and the radius.

Let the arc AmB (Figure 263) of a sector AOB contain n°. Ob-
viously, the area of the sector, whose arc contains 10, is equal to
1/360th part of the area of the disk, i.e. it is equal to irR2/360.
TherMore the area S of the sector, whose arc contains n°, is equal to

0irR2nlrrRn
R

360 2180

The fraction irRn/180 expresses the arc length of the arc AmB
If s denotes the arc length, then

Remark. In order to find the area of the disk segment, bounded by
an arc AmB (Figure 263) and the chord AB, it suffices to compute
separately the area of the sector AOB and AAOB, and then to
subtract the latter from the former one.

257. Problem. To compute the area of the disk whose circum-
ference is equal to 2 cm.

First, we find the radius R from the equation

2 cm, i.e.R = = 0.3183... cm.

Then we find the area of the disk:

11\2 1A=irR2=ir.(—) =—=0.3183... cm2.\irJ ic

258. Problem. To construct the square equivalent to a given
disk.

This is the famous problem of squaring the circle. In fact it
cannot be solved by means of straightedge and compass. If a square
with the side x is equivalent to the disk of radius R, then

x2=irR2,
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Let us assume for simplicity that 1? = 1. If the square with the
side x = could be constructed, then, according to the results of
§213, the number a would have been expressible through integers
by means of arithmetic operations and square roots. However, in
1882 a German mathematician Ferdinand Lindemann proved that ic
is transcendental. By definition, this means that it is not a solution
of any polynomial equation with integer coefficients. In particular,
this implies that it cannot be obtained from integers by arithmetic
operations and extractions of roots.

For the same reason, the problem of constructing a segment whose
length would be equal to the circumference of a given circle, also
cannot be solved by means of straightedge and compass.

EXERCISES

567. Tn a disk with the center 0, a chord AB is drawn, and another
disk is constructed on the line OA as a diameter. Prove that the
areas of two disk segments cut off by the chord AB from the two
disks have the ratio 4: 1.
568. Construct a disk equivalent to a given ring (i.e. the figure
bounded by two concentric circles).
569. Divide a disk into 2, 3, etc. equivalent parts by concentric
circles.
570. Compute the area of the disk segment cut off by a side a of
an inscribed into the disk: (a) equilateral triangle, (b) square, (c)
regular hexagon. -

571. Compute the ratio of the area of a sector intercepting a 600 arc
to the area of the disk inscribed into this sector.
572. Compute the area of the figure bounded by three pairwise tan-
gent congruent circles of radius R and situated in the exterior of the
circles.
573. The common chord of two disks subtends the arcs of 60° and
120° respectively. Compute the ratio of the areas of these disks.
574. Compute the area of a ring if the chord of the outer boundary
circle tangent to the inner boundary circle has length a.
575. Prove that if the diameter of a semicircle is divided into two
arbitrary segments, and another semicircle is described on each of
the segments as the diameter, then the figure bounded by the three
semicircles is equivalent to the disk whose diameter is congruent to
the perpendicular to the diameter of the original semicircle erected
at the division point.
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5 The Pythagorean theorem revisited
259. Theorem. The areas of squares constructed on the

legs of a right triangle add up to the area of the square
constructed on its hypotenuse.

This proposition is yet another form of the Pythagorean theo-
rem, which we proved in §188: the square of the number measuring
the length of the hypotenuse is equal to the sum of the squares of
the numbers measuring the legs. Indeed, the square of the number
measuring the 'ength of a segment is the number measuring the area
of the square constructed on this segment.

There are many other ways to prove the Pythagorean theorem.
Euclid' s proof. Let ABC (Figure 264) be a right triangle,

and BDEA, AFOC, and BCKH squares constructed on its legs
and the hypotenuse. It is required to prove that the areas of the first
two squares add up to the area of the third one.

D

Draw AM ± BC. Then the square BCKH is divided into two
rectangles. Let us prove that the rectangle BLMH is equivalent to
the square BDEA, and the rectangle LCKM is equivalent to the
square AFCC. For this, consider two triangles shaded in Figure
264. These triangles are congruent, since AABH is obtained from
ADBC by clockwise rotation about the point B through the angle

E

Figure 264 rigure 265
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of Indeed, rotating this way the segment BD, which is a side
of the square B.DEA, we obtain another side BA of this square, and
rotating the segment BC, which is a side of the square BCKH, we
obtain BH. Thus AABH and are equivalent. On the other
hand, L\DBC has the base DB, and the altitude congruent to BA
(since ACIIDB). Therefore L\DBC is equivalent to a half of the
square BDEA. Likewise, L\ABH has the base BH, and the altitude
congruent to BL (since ALIIBH). Therefore E5SABH is equivalent
to a half of the rectangle BLMH. Thus the rectangle BLMH is
equivalent to the square BDEA. Similarly, connecting C with B,
and A with K, and considering L\GCB and LSACK, we prove that
the rectangle LCKM is equivalent to the square AFCC. This im-
plies that the square BCKH is equivalent to the sum of the squares
BDEA and AFGC.

A tiling proof, shown in Figure 265, is based on tiling the
square, whose side is congruent to the sum of the legs of a given
right triangle, by the square constructed on the hypotenuse and by
four copies of the given triangle, and then re-tiling it by the squares
constructed on the legs and by the same four triangles.

One more proof, based on similarity, will be explained shortly.
260. Generalized Pythagorean theorem. The following gen-

eralization of the Pythagorean theorem is found in the 6th book of
Euclid's "Elements."

Theorem. If three similar polygons (P, Q, and It, Figure
266) are constructed on the sides of a right triangle, then
the polygon constracted on the hypotenuse is equivalent to
the sum of the polygons constructed on the legs.

In the special case when the polygons are squares, this proposition
turns into the Pythagorean theorem as stated in §259. Due to the
theorem of §251, the generalization follows from this special case.
Indeed, the areas of similar polygons are proportional to the squares
of homologous sides, and therefore

area of P — area of Q — area of It
a2 — — c2

Then, by properties of proportions,

area of P + area of Q — area of It
—

Since a2 + = c2, it follows that

area of P + area of Q = area of It.
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Moreover, the same reasoning applies to similar figures more general
than polygons. However, Euclid gives another proof of the general-
ized Pythagorean theorem, which does not rely on this special case.
Let us explain such a proof here. In particular, we will obtain one
more proof of the Pythagorean theorem itself.

First, let us notice that to prove the generalized Pythagorean
theorem, it suffices to prove it for polygons of one shape only. Indeed,
suppose that the areas of two polygons It and U' of different shapes
constructed on some segment (e.g. the hypotenuse) have a certain
ratio k. Then the areas of polygons similar to them (e.g. P and
or Q and Q') and constructed on another segment which is, say, m
times shorter, will be m2 times smaller for both shapes. Therefore
they will have the same ratio k. Thus, if the areas of Q' and U'
satisfy the property that the first two add up to the third one, then
the same holds true for the areas of P, Q and U which are k times
greater.

Now the idea is to take polygons similar not to a square, but
to the right triangle itself, and to construct them not outside the
triangle but inside it.4

Namely, drop the altitude of the right triangle to its hypotenuse.
The altitude divides the triangle into two triangles similar to it. To-
gether with the original triangle, we thus have three similar right
triangles constructed on the sides of it, and such that two of the
areas add up to the third one.

Corollary. If outside of a right triangle (Figure 267) two semi-
circles are described on its legs, and another semicircle is described

4The collage on the cover of this book illustrates this idea.

Figure 266 Figure 267
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on the hypotenuse so that it contains the triangle, then the geometric
figure bounded by the semicircles is equivalent to the triangle:

areaofA + area of B = area of C.

Indeed, after adding to both sides of this equality the areas (unshaded
in Figure 267) of the disk segments bounded by the greatest of the
senñcircles and by the legs of the triangle, it is required to prove that
the areas of the half-disks constructed on the legs add up to the area
of the half-disk constructed on the hypotenuse. This equality follows
from the generalized Pythagorean theorem.

Remark. The figures A and B are known as Hippocrates' lunes
after a Greek mathematician Hippocrates of who studied them
in the 5th century B.C. in connection with the of squaring
the circle. When the triangle is isosceles, then the lunes are congruent
and each is equivalent to a half of the triangle.

EXERCISES

Miscellaneous problems

576. The altitude dropped to the hypotenuse divides a given right
triangle into smaller triangles whose radii of the inscribed circles are
6 and 8 cm. Compute the radius of the inscribed circle of the given
triangle.
577. Compute the sides of a right triangle given the radii of its
circumscribed and inscribed circle.

578. Compute the area of a right triangle if the foot of the altitude

dropped to the hypotenuse of length c divides it in the extreme and
mean ratio.
579. Compute the area of the quadrilateral bounded by the four
bisectors of the angles of a rectangle with the sides a and b cm.
580.* Cut a given rectangle into four right triangles so that they can
be reassembled into two smaller rectangles similar to the given one.
581. The diagonals divide a quadrilateral into four triangles of which
three have the areas 10, 20, and 30 cm2, and the area of the fourth
one is greater. Compute the area of the quadrilateral.
582. A circle of the radius congruent to the altitude of a given isosce-
leb triangle is rolling along the base. Show that the arc length cut
out on the circle by the lateral sides of the triangle remains constant.
583. A circle is divided into four arbitrary arcs, and the midpoints
of the arcs are connected pairwise by straight segments. Prove that
two of the segments are perpendicular.
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584. Compute the length of a common tangent of two circles of radii
r and 2r which intersect at the right angle.
585. Prove that in a triangle, the altitudes ha, hb, and the radius
of the inscribed circle satisfy the relation: 1/ha + 1/hb + 1/he = i/r.
586. Prove that in a right triangle, the sum of the diameters of the
inscribed and circumscribed circles is congruent to the sum of the
legs.
587.* Prove that in a scalene triangle, the sum of the diameters of
the inscribed and circumscribed circle is congruent to the sum of the
segments of the altitudes from the orthocenter to the vertices.
588.* Find the geometric locus of all points with a fixed difference
of the distances from the sides of a given angle.
589.* A side of a square is the hypotenuse of a right triangle situated
in the exterior of the square. Prove that the bisector of the right angle
of the triangle passes through the center of the square, and compute
the distance between the center and the vertex of the right angle of
the triangle, given the sum of its legs.
590.* From each of the points of a given line, both tan-
gents to a given circle are drawn, and in the two angles thus formed,
congruent circles are inscribed. Prove that their line of centers is
parallel to the given line.
591 Three congruent circles intersect at one point. Prove that the
three lines, each passing through the center of one of the circles and
the second intersection point of the other two circles, are concurrent.
592.* Given a triangle ABC, find the geometric locus of points lvi
such that the triangles ARM and ACM are equivalent.
593* On a given circle, find two points, A and B, symmetric about
a given diameter CD and such that a given point E on the diameter
is the orthocenter of the triangle ABC.
594.* Find the geometric locus of the points of intersection of two
chords AC and RD of a given circle, where AR is a fixed chord of
this circle, and CD is any chord of a fixed length.

Construct a triangle, given its altitude, bisector and median
drawn from the same vertex.
596.* Construct a triangle, given its circumcenter, incenter, and the
intersection point of the extension of one of the bisectors with tlie
circumscribed circle.
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